<< Chapter < Page Chapter >> Page >
Vibrato is a type of low-frequency frequency modulation. Learn about vibrato produced by the singing voice and musical instruments, experiment with the vibrato effect using an interactive LabVIEW VI, and learn how to model the vibrato effect mathematically.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Overview

Vibrato is a type of low-frequency frequency modulation. After learning about vibrato produced by the singing voice and musical instruments, you will experiment with the vibrato effect using an interactive LabVIEW VI and learn how to model the vibrato effect mathematically.

Physical vibrato: singing voice and instruments

Vocalists and instrumentalists will introduce vibrato -- a low-frequency variation in pitch -- into long sustained notes primarily to add musical interest. Listeners are drawn to sounds with dynamic (changing) spectral characteristics, and vibrato makes a sustained note sound much more interesting than a constant frequency. Moreover, sustaining a long note at a constant frequency with sufficient accuracy to avoid drifting "out of tune" is challenging for vocalists and wind-based instruments. Vibrato is produced in a variety of ways, depending on the instrument. Trombonists wiggle the slide slightly to change the overall tube length that sets pitch. A violinist will rock his or her left hand that presses the string to slightly alter the effective string length.

Vibrato demonstration

Download and run the LabVIEW VI vibrato.vi to demonstrate the vibrato effect applied to a sinusoidal oscillator. This VI requires the TripleDisplay front-panel indicator. Vibrato normally requires two controls: rate determines how quickly the frequency should fluctuate, and depth establishes the amount of frequency fluctuation. The third control adjusts the pitch of the sinusoidal oscillator.

Modeling the vibrato effect

Vibrato is a type of low-frequency frequency modulation . In this section the mathematical equations necessary to model the vibrato effect will be developed.In addition, two important effects associated with the singing voice will be discussed to produce a more realistic model.

Naive approach

The screencast video develops the mathematical equation needed to model the vibrato effect in perhaps an intuitively-obvious (but unfortunately incorrect) way. After watching the video, try the interactive front panel VI below that is part of the demonstration, then respond to the exercise questions to ensure that you understand the main concepts.

[video] Perhaps "intuitively-obvious" (but incorrect) way to model vibrato

Download and run the LabVIEW VI vibrato_naive.vi .

What is the main auditory effect produced by the intuitively-obvious approach to modeling vibrato?

The amount of frequency fluctuation (deviation) increases with time rather than remaining constant.

When modifying the basic sinusoidal oscillator equation, which part -- frequency or phase - requires the most attention?

Phase; the entire argument to the sine function must be considered as a time-varying phase function ϕ ( t )

How should the phase function ϕ ( t ) be designed to achieve vibrato?

A ramp function with a superimposed sinusoidal variation.

Correct approach

The screencast video develops the mathematical equation needed to model the vibrato effect for a constant low-frequency variation.

Refer again to the LabVIEW VI vibrato.vi you downloaded earlier.

[video] Correct way to model vibratro

Improved realism for singing voice

Several effects become immediately apparent when listening to an opera singer:

  • Vibrato rate begins slowly then increases to a faster rate; for example, listen to this short clip: sing.wav
  • Vibrato depth increases as the note progresses (listen to the clip again: sing.wav )
  • Loudness (intensity) is initially low then gradually increases (listen to the same clip one more time: sing.wav )
  • The "brightness" (amount of overtones or harmonics) is proportional to intensity (please listen to the same clip one last time: sing.wav )

These effects are also evident when listening to expressive instrumentalists from the strings, brass, and woodwind sections of the orchestra. The mathematical model for vibrato can therefore be improved by (1) making the vibrato depth track (or be proportional to) the intensity envelope of the sound, and by (2) making the vibrato rate track the intensity envelope. Modeling the "brightness" effect would require adding overtones or harmonics to the sound.

Questions & Answers

how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Musical signal processing with labview (all modules). OpenStax CNX. Jan 05, 2010 Download for free at http://cnx.org/content/col10507/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview (all modules)' conversation and receive update notifications?

Ask