<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use right triangles to evaluate trigonometric functions.
  • Find function values for 30° ( π 6 ) , 45° ( π 4 ) , and 60° ( π 3 ) .
  • Use cofunctions of complementary angles.
  • Use the definitions of trigonometric functions of any angle.
  • Use right triangle trigonometry to solve applied problems.

We have previously defined the sine and cosine of an angle in terms of the coordinates of a point on the unit circle intersected by the terminal side of the angle:

cos   t = x sin   t = y

In this section, we will see another way to define trigonometric functions using properties of right triangles .

Using right triangles to evaluate trigonometric functions

In earlier sections, we used a unit circle to define the trigonometric functions . In this section, we will extend those definitions so that we can apply them to right triangles. The value of the sine or cosine function of t is its value at t radians. First, we need to create our right triangle. [link] shows a point on a unit circle of radius 1. If we drop a vertical line segment from the point ( x , y ) to the x -axis, we have a right triangle whose vertical side has length y and whose horizontal side has length x . We can use this right triangle to redefine sine, cosine, and the other trigonometric functions as ratios of the sides of a right triangle.

Graph of quarter circle with radius of 1 and angle of t. Point of (x,y) is at intersection of terminal side of angle and edge of circle.

We know

cos   t = x 1 = x

Likewise, we know

sin   t = y 1 = y

These ratios still apply to the sides of a right triangle when no unit circle is involved and when the triangle is not in standard position and is not being graphed using ( x , y ) coordinates. To be able to use these ratios freely, we will give the sides more general names: Instead of x , we will call the side between the given angle and the right angle the adjacent side    to angle t . (Adjacent means “next to.”) Instead of y , we will call the side most distant from the given angle the opposite side    from angle t . And instead of 1 , we will call the side of a right triangle opposite the right angle the hypotenuse    . These sides are labeled in [link] .

A right triangle with hypotenuse, opposite, and adjacent sides labeled.
The sides of a right triangle in relation to angle t .

Understanding right triangle relationships

Given a right triangle with an acute angle of t ,

sin ( t ) = opposite hypotenuse cos ( t ) = adjacent hypotenuse tan ( t ) = opposite adjacent

A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of “ S ine is o pposite over h ypotenuse, C osine is a djacent over h ypotenuse, T angent is o pposite over a djacent.”

Given the side lengths of a right triangle and one of the acute angles, find the sine, cosine, and tangent of that angle.

  1. Find the sine as the ratio of the opposite side to the hypotenuse.
  2. Find the cosine as the ratio of the adjacent side to the hypotenuse.
  3. Find the tangent is the ratio of the opposite side to the adjacent side.

Evaluating a trigonometric function of a right triangle

Given the triangle shown in [link] , find the value of cos α .

A right triangle with sid lengths of 8, 15, and 17. Angle alpha also labeled.

The side adjacent to the angle is 15, and the hypotenuse of the triangle is 17, so:

cos ( α ) = adjacent hypotenuse = 15 17

Given the triangle shown in [link] , find the value of sin t .

A right triangle with sides of 7, 24, and 25. Also labeled is angle t.

7 25

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?