<< Chapter < Page Chapter >> Page >
In this module we provide an overview of some of the most common greedy algorithms and their application to the problem of sparse recovery.

Setup

As opposed to solving a (possibly computationally expensive) convex optimization program, an alternate flavor to sparse recovery is to apply methods of sparse approximation . Recall that the goal of sparse recovery is to recover the sparsest vector x which explains the linear measurements y . In other words, we aim to solve the (nonconvex) problem:

min I | I | : y = i I φ i x i ,

where I denotes a particular subset of the indices i = 1 , ... , N , and φ i denotes the i th column of Φ . It is well known that searching over the power set formed by the columns of Φ for the optimal subset I * with smallest cardinality is NP-hard. Instead, classical sparse approximation methods tackle this problem by greedily selecting columns of Φ and forming successively better approximations to y .

Matching pursuit

Matching Pursuit (MP), named and introduced to the signal processing community by Mallat and Zhang  [link] , [link] , is an iterative greedy algorithm that decomposes a signal into a linear combination of elements from a dictionary. In sparse recovery, this dictionary is merely the sampling matrix Φ R M × N ; we seek a sparse representation ( x ) of our “signal” y .

MP is conceptually very simple. A key quantity in MP is the residual r R M ; the residual represents the as-yet “unexplained” portion of the measurements. At each iteration of the algorithm, we select a vector from the dictionary that is maximally correlated with the residual r :

λ k = arg max λ r k , φ λ φ λ φ λ 2 .

Once this column is selected, we possess a “better” representation of the signal, since a new coefficient indexed by λ k has been added to our signal approximation. Thus, we update both the residual and the approximation as follows:

r k = r k - 1 - r k - 1 , φ λ k φ λ k φ λ k 2 , x ^ λ k = x ^ λ k + r k - 1 , φ λ k .

and repeat the iteration. A suitable stopping criterion is when the norm of r becomes smaller than some quantity. MP is described in pseudocode form below.

Inputs: Measurement matrix Φ , signal measurements y Outputs: Sparse signal x ^ initialize: x ^ 0 = 0 , r = y , i = 0 . while ħalting criterion false do 1. i i + 1 2. b Φ T r {form residual signal estimate} 3. x ^ i x ^ i - 1 + T ( 1 ) {update largest magnitude coefficient} 4. r r - Φ x ^ i {update measurement residual} end while return x ^ x ^ i

Although MP is intuitive and can find an accurate approximation of the signal, it possesses two major drawbacks: (i) it offers no guarantees in terms of recovery error; indeed, it does not exploit the special structure present in the dictionary Φ ; (ii) the required number of iterations required can be quite large. The complexity of MP is O ( M N T )   [link] , where T is the number of MP iterations

Orthogonal matching pursuit (omp)

Matching Pursuit (MP) can prove to be computationally infeasible for many problems, since the complexity of MP grows linearly in the number of iterations T . By employing a simple modification of MP, the maximum number of MP iterations can be upper bounded as follows. At any iteration k , Instead of subtracting the contribution of the dictionary element with which the residual r is maximally correlated, we compute the projection of r onto the orthogonal subspace to the linear span of the currently selected dictionary elements. This quantity thus better represents the “unexplained” portion of the residual, and is subtracted from r to form a new residual, and the process is repeated. If Φ Ω is the submatrix formed by the columns of Φ selected at time step t , the following operations are performed:

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask