<< Chapter < Page Chapter >> Page >
As with analog linear systems, we need to find the frequency response of discrete-time systems.

As with analog linear systems, we need to find the frequency response of discrete-time systems. We used impedances to derivedirectly from the circuit's structure the frequency response. The only structure we have so far for a discrete-timesystem is the difference equation. We proceed as when we used impedances: let the input be a complex exponential signal. Whenwe have a linear, shift-invariant system, the output should also be a complex exponential of the same frequency, changed inamplitude and phase. These amplitude and phase changes comprise the frequency response we seek. The complex exponential inputsignal is x n X 2 f n . Note that this input occurs for all values of n . No need to worry about initial conditions here. Assume the output has a similar form: y n Y 2 f n . Plugging these signals into the fundamental difference equation , we have

Y 2 f n a 1 Y 2 f n 1 a p Y 2 f n p b 0 X 2 f n b 1 X 2 f n 1 b q X 2 f n q
The assumed output does indeed satisfy the difference equation if the output complex amplitude is related to the inputamplitude by Y b 0 b 1 2 f b q 2 q f 1 a 1 2 f a p 2 p f X This relationship corresponds to the system's frequency response or, by another name, its transfer function. We find that anydiscrete-time system defined by a difference equation has a transfer function given by
H 2 f b 0 b 1 2 f b q 2 q f 1 a 1 2 f a p 2 p f
Furthermore, because any discrete-time signal can be expressed as a superposition of complex exponential signals andbecause linear discrete-time systems obey the Superposition Principle, the transfer function relates the discrete-time Fourier transform ofthe system's output to the input's Fourier transform.
Y 2 f X 2 f H 2 f

The frequency response of the simple IIR system (differenceequation given in a previous example ) is given by

H 2 f b 1 a 2 f
This Fourier transform occurred in a previous example; the exponential signal spectrum portrays the magnitude and phase of this transfer function. When thefilter coefficient a is positive, we have a lowpass filter; negative a results in a highpass filter. The larger the coefficient in magnitude, the more pronouncedthe lowpass or highpass filtering.

Got questions? Get instant answers now!

The length- q boxcar filter (difference equation found in a previous example ) has the frequency response

H 2 f 1 q m 0 q 1 2 f m
This expression amounts to the Fourier transform of the boxcar signal . There we found that this frequency response has a magnitude equal to the absolute value of dsinc f ; see the length-10 filter's frequency response . We see that boxcar filters--length- q signal averagers--have a lowpass behavior, having a cutofffrequency of 1 q .

Got questions? Get instant answers now!

Suppose we multiply the boxcar filter's coefficients by a sinusoid: b m 1 q 2 f 0 m Use Fourier transform properties to determine the transfer function. How would you characterize this system: Does itact like a filter? If so, what kind of filter and how do you control its characteristics with the filter's coefficients?

It now acts like a bandpass filter with a center frequency of f 0 and a bandwidth equal to twice of the original lowpass filter.

Got questions? Get instant answers now!

These examples illustrate the point that systems described (and implemented) by difference equations serve as filters fordiscrete-time signals. The filter's order is given by the number p of denominator coefficients in the transfer function (if the system is IIR) or by the number q of numerator coefficients if the filter is FIR. When a system's transfer function has both terms,the system is usually IIR, and its order equals p regardless of q . By selecting the coefficients and filter type, filters having virtually any frequency responsedesired can be designed. This design flexibility can't be found in analog systems. In the next section, we detail how analogsignals can be filtered by computers, offering a much greater range of filtering possibilities than is possible with circuits.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
cell is the smallest unit of the humanity biologically
Abraham
what is biology
Victoria Reply
what is biology
Abraham
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask