<< Chapter < Page Chapter >> Page >
As with analog linear systems, we need to find the frequency response of discrete-time systems.

As with analog linear systems, we need to find the frequency response of discrete-time systems. We used impedances to derivedirectly from the circuit's structure the frequency response. The only structure we have so far for a discrete-timesystem is the difference equation. We proceed as when we used impedances: let the input be a complex exponential signal. Whenwe have a linear, shift-invariant system, the output should also be a complex exponential of the same frequency, changed inamplitude and phase. These amplitude and phase changes comprise the frequency response we seek. The complex exponential inputsignal is x n X 2 f n . Note that this input occurs for all values of n . No need to worry about initial conditions here. Assume the output has a similar form: y n Y 2 f n . Plugging these signals into the fundamental difference equation , we have

Y 2 f n a 1 Y 2 f n 1 a p Y 2 f n p b 0 X 2 f n b 1 X 2 f n 1 b q X 2 f n q
The assumed output does indeed satisfy the difference equation if the output complex amplitude is related to the inputamplitude by Y b 0 b 1 2 f b q 2 q f 1 a 1 2 f a p 2 p f X This relationship corresponds to the system's frequency response or, by another name, its transfer function. We find that anydiscrete-time system defined by a difference equation has a transfer function given by
H 2 f b 0 b 1 2 f b q 2 q f 1 a 1 2 f a p 2 p f
Furthermore, because any discrete-time signal can be expressed as a superposition of complex exponential signals andbecause linear discrete-time systems obey the Superposition Principle, the transfer function relates the discrete-time Fourier transform ofthe system's output to the input's Fourier transform.
Y 2 f X 2 f H 2 f

The frequency response of the simple IIR system (differenceequation given in a previous example ) is given by

H 2 f b 1 a 2 f
This Fourier transform occurred in a previous example; the exponential signal spectrum portrays the magnitude and phase of this transfer function. When thefilter coefficient a is positive, we have a lowpass filter; negative a results in a highpass filter. The larger the coefficient in magnitude, the more pronouncedthe lowpass or highpass filtering.

Got questions? Get instant answers now!

The length- q boxcar filter (difference equation found in a previous example ) has the frequency response

H 2 f 1 q m 0 q 1 2 f m
This expression amounts to the Fourier transform of the boxcar signal . There we found that this frequency response has a magnitude equal to the absolute value of dsinc f ; see the length-10 filter's frequency response . We see that boxcar filters--length- q signal averagers--have a lowpass behavior, having a cutofffrequency of 1 q .

Got questions? Get instant answers now!

Suppose we multiply the boxcar filter's coefficients by a sinusoid: b m 1 q 2 f 0 m Use Fourier transform properties to determine the transfer function. How would you characterize this system: Does itact like a filter? If so, what kind of filter and how do you control its characteristics with the filter's coefficients?

It now acts like a bandpass filter with a center frequency of f 0 and a bandwidth equal to twice of the original lowpass filter.

Got questions? Get instant answers now!

These examples illustrate the point that systems described (and implemented) by difference equations serve as filters fordiscrete-time signals. The filter's order is given by the number p of denominator coefficients in the transfer function (if the system is IIR) or by the number q of numerator coefficients if the filter is FIR. When a system's transfer function has both terms,the system is usually IIR, and its order equals p regardless of q . By selecting the coefficients and filter type, filters having virtually any frequency responsedesired can be designed. This design flexibility can't be found in analog systems. In the next section, we detail how analogsignals can be filtered by computers, offering a much greater range of filtering possibilities than is possible with circuits.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask