# 5.12 Continuous function  (Page 2/6)

 Page 2 / 6

## Continuity at a point

The requirement of continuity is that there should not be abrupt change in function value when there is small change in independent variable. We can enforce this requirement if we can determine x-values in its immediate neighborhood in the domain of function for smallest change in the function values. Mathematically, we say that a function is continuous at a point x=a, if there is small change in function such that $|f\left(x\right)-f\left(a\right)|<\delta$ , then independent variable “x” varies in its immediate neighborhood such that $|x-a|<\in$ , where δ and ∈are arbitrarily chosen small positive numbers.

Condition of continuity is expressed in terms of definition of various limits. Note that limit approaches a value when independent variable comes very close to a point where continuity is being checked. If limit approaches very close to the function value at a point, then it is guaranteed that there exists a value of independent variable in its immediate neighborhood. This fulfills the requirement of continuity as explained in previous paragraph.

For the sake of understanding the requirement of continuity, let us consider identity function, which is known to be continuous in its domain.

$f\left(x\right)=x$

Let us consider a test point, x=1. Here, both left and right limit exist and is equal to 1. As such limit of function exists and is equal to 1, which is equal to the function value. As a matter of fact, these observations underline the requirement of continuity at a point. The conditions for continuity at a point in the domain of function are :

1: Limit of function exits at the point.

2: Limit of function is equal to function value at that point.

Mathematically,

$\underset{x->a-}{\overset{}{\mathrm{lim}}}f\left(x\right)=\underset{x->a+}{\overset{}{\mathrm{lim}}}f\left(x\right)=\underset{x->a}{\overset{}{\mathrm{lim}}}f\left(x\right)=f\left(a\right)$

One important aspect of the requirement is that we test continuity at a finite real value of x, having finite function value. Hence, it is implicitly implied that limit of function should evaluate to a finite function value.

## Continuity from left

A function is continuous from left at x=a when left limit exists at x=a and is equal to function value at that point.

$\underset{x>a-}{\overset{}{\mathrm{lim}}}f\left(x\right)=f\left(a\right)$

## Continuity from right

A function is continuous from right at x=a when right limit exists at x=a and is equal to function value at that point.

$\underset{x>a+}{\overset{}{\mathrm{lim}}}f\left(x\right)={L}_{r}$

## Continuity .vs. limit

The condition of continuity given above appears to be same as that of limit, which is defined as :

$\underset{x->a-}{\overset{}{\mathrm{lim}}}f\left(x\right)=\underset{x->a+}{\overset{}{\mathrm{lim}}}f\left(x\right)=\underset{x->a}{\overset{}{\mathrm{lim}}}f\left(x\right)=L$

However, there is one differentiating aspect. The limit need not evaluate to function value as required for continuity. It means continuity of function has stricter requirement than that of the existence of limit. To understand this point, we consider a variant of modulus function as given here,

| x ; x>0 f(x) = | 1 ; x=0| -x ; x<0

Clearly, limit exists and is equal to zero, but function value is 1 at x=0. Thus, limit is finite, but not equal to function value. As such, given function is not continuous at x=0. The important point to note is that existence of limit or function value at a point is a necessary condition, but not a sufficient condition for continuity. Both the conditions as enumerated should be fulfilled. The concept of continuity, therefore, is a stricter property of a function with respect to limit.

how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x