<< Chapter < Page Chapter >> Page >

The body provides us with an excellent indication that many thermodynamic processes are irreversible . An irreversible process can go in one direction but not the reverse, under a given set of conditions. For example, although body fat can be converted to do work and produce heat transfer, work done on the body and heat transfer into it cannot be converted to body fat. Otherwise, we could skip lunch by sunning ourselves or by walking down stairs. Another example of an irreversible thermodynamic process is photosynthesis. This process is the intake of one form of energy—light—by plants and its conversion to chemical potential energy. Both applications of the first law of thermodynamics are illustrated in [link] . One great advantage of conservation laws such as the first law of thermodynamics is that they accurately describe the beginning and ending points of complex processes, such as metabolism and photosynthesis, without regard to the complications in between. [link] presents a summary of terms relevant to the first law of thermodynamics.

Part a of the figure is a pictorial representation of metabolism in a human body. The food is shown to enter the body as shown by a bold arrow toward the body. Work W and heat Q leave the body as shown by bold arrows pointing outward from the body. Delta U is shown as the stored food energy. Part b of the figure shows the metabolism in plants .The heat from the sunlight is shown to fall on a plant represented as Q in. The heat given out by the plant is shown as Q out by an arrow pointing away from the plant.
(a) The first law of thermodynamics applied to metabolism. Heat transferred out of the body ( Q size 12{Q} {} ) and work done by the body ( W size 12{W} {} ) remove internal energy, while food intake replaces it. (Food intake may be considered as work done on the body.) (b) Plants convert part of the radiant heat transfer in sunlight to stored chemical energy, a process called photosynthesis.
Summary of terms for the first law of thermodynamics, ΔU=Q−W
Term Definition
U size 12{U} {} Internal energy—the sum of the kinetic and potential energies of a system’s atoms and molecules. Can be divided into many subcategories, such as thermal and chemical energy. Depends only on the state of a system (such as its P size 12{P} {} , V size 12{V} {} , and T size 12{T} {} ), not on how the energy entered the system. Change in internal energy is path independent.
Q size 12{Q} {} Heat—energy transferred because of a temperature difference. Characterized by random molecular motion. Highly dependent on path. Q size 12{Q} {} entering a system is positive.
W size 12{W} {} Work—energy transferred by a force moving through a distance. An organized, orderly process. Path dependent. W size 12{W} {} done by a system (either against an external force or to increase the volume of the system) is positive.

Section summary

  • The first law of thermodynamics is given as Δ U = Q W size 12{ΔU=Q - W} {} , where Δ U size 12{ΔU} {} is the change in internal energy of a system, Q size 12{Q} {} is the net heat transfer (the sum of all heat transfer into and out of the system), and W size 12{W} {} is the net work done (the sum of all work done on or by the system).
  • Both Q size 12{Q} {} and W size 12{W} {} are energy in transit; only Δ U size 12{ΔU} {} represents an independent quantity capable of being stored.
  • The internal energy U size 12{U} {} of a system depends only on the state of the system and not how it reached that state.
  • Metabolism of living organisms, and photosynthesis of plants, are specialized types of heat transfer, doing work, and internal energy of systems.

Conceptual questions

Describe the photo of the tea kettle at the beginning of this section in terms of heat transfer, work done, and internal energy. How is heat being transferred? What is the work done and what is doing it? How does the kettle maintain its internal energy?

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics (engineering physics 2, tuas). OpenStax CNX. May 08, 2014 Download for free at http://legacy.cnx.org/content/col11649/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics (engineering physics 2, tuas)' conversation and receive update notifications?

Ask