To check the result, substitute
$\text{\hspace{0.17em}}x=10\text{\hspace{0.17em}}$ into
$\text{\hspace{0.17em}}\mathrm{log}\left(3x-2\right)-\mathrm{log}\left(2\right)=\mathrm{log}\left(x+4\right).$
Using the one-to-one property of logarithms to solve logarithmic equations
For any algebraic expressions
$\text{\hspace{0.17em}}S\text{\hspace{0.17em}}$ and
$\text{\hspace{0.17em}}T\text{\hspace{0.17em}}$ and any positive real number
$\text{\hspace{0.17em}}b,$ where
$\text{\hspace{0.17em}}b\ne 1,$
Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an extraneous solution.
Given an equation containing logarithms, solve it using the one-to-one property.
Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form
$\text{\hspace{0.17em}}{\mathrm{log}}_{b}S={\mathrm{log}}_{b}T.$
Use the one-to-one property to set the arguments equal.
Solve the resulting equation,
$\text{\hspace{0.17em}}S=T,$ for the unknown.
Solving an equation using the one-to-one property of logarithms
$x=1\text{\hspace{0.17em}}$ or
$\text{\hspace{0.17em}}x=-1$
Solving applied problems using exponential and logarithmic equations
In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.
One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a radioactive substance to decay, called its
half-life .
[link] lists the half-life for several of the more common radioactive substances.
Substance
Use
Half-life
gallium-67
nuclear medicine
80 hours
cobalt-60
manufacturing
5.3 years
technetium-99m
nuclear medicine
6 hours
americium-241
construction
432 years
carbon-14
archeological dating
5,715 years
uranium-235
atomic power
703,800,000 years
We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to calculate the amount remaining after a specified time. We can use the formula for radioactive decay:
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
In this morden time nanotechnology used in many field .
1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc
2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc
3- Atomobile -MEMS, Coating on car etc.
and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change .
maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it