<< Chapter < Page Chapter >> Page >

To check the result, substitute x = 10 into log ( 3 x 2 ) log ( 2 ) = log ( x + 4 ) .

log ( 3 ( 10 ) 2 ) log ( 2 ) = log ( ( 10 ) + 4 )            log ( 28 ) log ( 2 ) = log ( 14 )                         log ( 28 2 ) = log ( 14 ) The solution checks .

Using the one-to-one property of logarithms to solve logarithmic equations

For any algebraic expressions S and T and any positive real number b , where b 1 ,

log b S = log b T if and only if S = T

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an extraneous solution.

Given an equation containing logarithms, solve it using the one-to-one property.

  1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form log b S = log b T .
  2. Use the one-to-one property to set the arguments equal.
  3. Solve the resulting equation, S = T , for the unknown.

Solving an equation using the one-to-one property of logarithms

Solve ln ( x 2 ) = ln ( 2 x + 3 ) .

           ln ( x 2 ) = ln ( 2 x + 3 )                   x 2 = 2 x + 3 Use the one-to-one property of the logarithm .      x 2 2 x 3 = 0 Get zero on one side before factoring . ( x 3 ) ( x + 1 ) = 0 Factor using FOIL .                x 3 = 0  or  x + 1 = 0 If a product is zero, one of the factors must be zero .                     x = 3  or  x = 1 Solve for  x .

Solve ln ( x 2 ) = ln 1.

x = 1 or x = 1

Solving applied problems using exponential and logarithmic equations

In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a radioactive substance to decay, called its half-life . [link] lists the half-life for several of the more common radioactive substances.

Substance Use Half-life
gallium-67 nuclear medicine 80 hours
cobalt-60 manufacturing 5.3 years
technetium-99m nuclear medicine 6 hours
americium-241 construction 432 years
carbon-14 archeological dating 5,715 years
uranium-235 atomic power 703,800,000 years

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to calculate the amount remaining after a specified time. We can use the formula for radioactive decay:

A ( t ) = A 0 e ln ( 0.5 ) T t A ( t ) = A 0 e ln ( 0.5 ) t T A ( t ) = A 0 ( e ln ( 0.5 ) ) t T A ( t ) = A 0 ( 1 2 ) t T


  • A 0 is the amount initially present
  • T is the half-life of the substance
  • t is the time period over which the substance is studied
  • y is the amount of the substance present after time t

Using the formula for radioactive decay to find the quantity of a substance

How long will it take for ten percent of a 1000-gram sample of uranium-235 to decay?

          y = 1000 e ln ( 0.5 ) 703,800,000 t       900 = 1000 e ln ( 0.5 ) 703,800,000 t After 10% decays, 900 grams are left .        0.9 = e ln ( 0.5 ) 703,800,000 t Divide by 1000 . ln ( 0.9 ) = ln ( e ln ( 0.5 ) 703,800,000 t ) Take ln of both sides . ln ( 0.9 ) = ln ( 0.5 ) 703,800,000 t ln ( e M ) = M            t = 703,800,000 × ln ( 0.9 ) ln ( 0.5 ) years Solve for  t .            t 106,979,777 years

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Selected topics in algebra. OpenStax CNX. Sep 02, 2015 Download for free at http://legacy.cnx.org/content/col11877/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Selected topics in algebra' conversation and receive update notifications?