# 4.6 Dc circuits containing resistors and capacitors  (Page 4/9)

 Page 4 / 9

## RC Circuits for timing

$\text{RC}$ circuits are commonly used for timing purposes. A mundane example of this is found in the ubiquitous intermittent wiper systems of modern cars. The time between wipes is varied by adjusting the resistance in an $\text{RC}$ circuit. Another example of an $\text{RC}$ circuit is found in novelty jewelry, Halloween costumes, and various toys that have battery-powered flashing lights. (See [link] for a timing circuit.)

A more crucial use of $\text{RC}$ circuits for timing purposes is in the artificial pacemaker, used to control heart rate. The heart rate is normally controlled by electrical signals generated by the sino-atrial (SA) node, which is on the wall of the right atrium chamber. This causes the muscles to contract and pump blood. Sometimes the heart rhythm is abnormal and the heartbeat is too high or too low.

The artificial pacemaker is inserted near the heart to provide electrical signals to the heart when needed with the appropriate time constant. Pacemakers have sensors that detect body motion and breathing to increase the heart rate during exercise to meet the body’s increased needs for blood and oxygen.

## Calculating time: RC Circuit in a heart defibrillator

A heart defibrillator is used to resuscitate an accident victim by discharging a capacitor through the trunk of her body. A simplified version of the circuit is seen in [link] . (a) What is the time constant if an $8.00-\mu F$ capacitor is used and the path resistance through her body is $\text{1.00}×{10}^{3}\phantom{\rule{0.25em}{0ex}}\Omega$ ? (b) If the initial voltage is 10.0 kV, how long does it take to decline to $5.00×{10}^{2}\phantom{\rule{0.25em}{0ex}}\text{V}$ ?

Strategy

Since the resistance and capacitance are given, it is straightforward to multiply them to give the time constant asked for in part (a). To find the time for the voltage to decline to $5.00×{10}^{2}\phantom{\rule{0.25em}{0ex}}\text{V}$ , we repeatedly multiply the initial voltage by 0.368 until a voltage less than or equal to $5.00×{10}^{2}\phantom{\rule{0.25em}{0ex}}\text{V}$ is obtained. Each multiplication corresponds to a time of $\tau$ seconds.

Solution for (a)

The time constant $\tau$ is given by the equation $\tau =\text{RC}$ . Entering the given values for resistance and capacitance (and remembering that units for a farad can be expressed as $s/\Omega$ ) gives

$\tau =\text{RC}=\left(1.00×{10}^{3}\phantom{\rule{0.15em}{0ex}}\Omega \right)\left(8\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\mathrm{\mu F}\right)=8\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\text{ms.}$

Solution for (b)

In the first 8.00 ms, the voltage (10.0 kV) declines to 0.368 of its initial value. That is:

(Notice that we carry an extra digit for each intermediate calculation.) After another 8.00 ms, we multiply by 0.368 again, and the voltage is

$\begin{array}{lll}V\prime & =& 0.368V\\ & =& \left(0.368\right)\left(3.680×{10}^{3}\phantom{\rule{0.25em}{0ex}}\text{V}\right)\\ & =& 1.354×{10}^{3}\phantom{\rule{0.25em}{0ex}}\text{V}\phantom{\rule{0.25em}{0ex}}\text{at}\phantom{\rule{0.25em}{0ex}}t=16.0\phantom{\rule{0.25em}{0ex}}\text{ms.}\end{array}$

Similarly, after another 8.00 ms, the voltage is

$\begin{array}{lll}V\text{′′}& =& \text{0.368}V\prime =\left(\text{0.368}\right)\left(\text{1.354}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{V}\right)\\ & =& \text{498 V at}\phantom{\rule{0.25em}{0ex}}t=\text{24}\text{.0 ms.}\end{array}$

Discussion

So after only 24.0 ms, the voltage is down to 498 V, or 4.98% of its original value. Such brief times are useful in heart defibrillation, because the brief but intense current causes a brief but effective contraction of the heart. The actual circuit in a heart defibrillator is slightly more complex than the one in [link] , to compensate for magnetic and AC effects that will be covered in Magnetism .

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!