<< Chapter < Page Chapter >> Page >

Structures that produce photosynthates for the growing plant are referred to as sources . Sugars produced in sources, such as leaves, need to be delivered to growing parts of the plant via the phloem in a process called translocation    . The points of sugar delivery, such as roots, young shoots, and developing seeds, are called sinks . Seeds, tubers, and bulbs can be either a source or a sink, depending on the plant’s stage of development and the season.

The products from the source are usually translocated to the nearest sink through the phloem. For example, the highest leaves will send photosynthates upward to the growing shoot tip, whereas lower leaves will direct photosynthates downward to the roots. Intermediate leaves will send products in both directions, unlike the flow in the xylem, which is always unidirectional (soil to leaf to atmosphere). The pattern of photosynthate flow changes as the plant grows and develops. Photosynthates are directed primarily to the roots early on, to shoots and leaves during vegetative growth, and to seeds and fruits during reproductive development. They are also directed to tubers for storage.

Translocation: transport from source to sink

Photosynthates, such as sucrose, are produced in the mesophyll cells of photosynthesizing leaves. From there they are translocated through the phloem to where they are used or stored. Mesophyll cells are connected by cytoplasmic channels called plasmodesmata. Photosynthates move through these channels to reach phloem sieve-tube elements (STEs) in the vascular bundles. From the mesophyll cells, the photosynthates are loaded into the phloem STEs. The sucrose is actively transported against its concentration gradient (a process requiring ATP) into the phloem cells using the electrochemical potential of the proton gradient. This is coupled to the uptake of sucrose with a carrier protein called the sucrose-H + symporter.

Phloem STEs have reduced cytoplasmic contents, and are connected by a sieve plate with pores that allow for pressure-driven bulk flow, or translocation, of phloem sap. Companion cells are associated with STEs. They assist with metabolic activities and produce energy for the STEs ( [link] ).

Illustration shows phloem, a column-like structure that is composed of stacks of cylindrical cells called sieve-tube elements. Each cell is separated by a sieve-tube plate. The sieve-tube plate has holes in it, like a slice of Swiss cheese. Lateral sieve areas on the side of the column allow different phloem tubes to interact.
Phloem is comprised of cells called sieve-tube elements. Phloem sap travels through perforations called sieve tube plates. Neighboring companion cells carry out metabolic functions for the sieve-tube elements and provide them with energy. Lateral sieve areas connect the sieve-tube elements to the companion cells.

Once in the phloem, the photosynthates are translocated to the closest sink. Phloem sap is an aqueous solution that contains up to 30 percent sugar, minerals, amino acids, and plant growth regulators. The high percentage of sugar decreases Ψ s, which decreases the total water potential and causes water to move by osmosis from the adjacent xylem into the phloem tubes, thereby increasing pressure. This increase in total water potential causes the bulk flow of phloem from source to sink ( [link] ). Sucrose concentration in the sink cells is lower than in the phloem STEs because the sink sucrose has been metabolized for growth, or converted to starch for storage or other polymers, such as cellulose, for structural integrity. Unloading at the sink end of the phloem tube occurs by either diffusion or active transport of sucrose molecules from an area of high concentration to one of low concentration. Water diffuses from the phloem by osmosis and is then transpired or recycled via the xylem back into the phloem sap.

 Illustration shows the transpiration of water up the tubes of the xylem from a root sink cell. At the same time, sucrose is translocated down the phloem to the root sink cell from a leaf source cell. The sucrose concentration is high in the  source cell, and gradually decreases from the source to the root.
Sucrose is actively transported from source cells into companion cells and then into the sieve-tube elements. This reduces the water potential, which causes water to enter the phloem from the xylem. The resulting positive pressure forces the sucrose-water mixture down toward the roots, where sucrose is unloaded. Transpiration causes water to return to the leaves through the xylem vessels.

Section summary

Water potential (Ψ) is a measure of the difference in potential energy between a water sample and pure water. The water potential in plant solutions is influenced by solute concentration, pressure, gravity, and matric potential. Water potential and transpiration influence how water is transported through the xylem in plants. These processes are regulated by stomatal opening and closing. Photosynthates (mainly sucrose) move from sources to sinks through the plant’s phloem. Sucrose is actively loaded into the sieve-tube elements of the phloem. The increased solute concentration causes water to move by osmosis from the xylem into the phloem. The positive pressure that is produced pushes water and solutes down the pressure gradient. The sucrose is unloaded into the sink, and the water returns to the xylem vessels.

Art connections

[link] Positive water potential is placed on the left side of the tube by increasing Ψ p such that the water level rises on the right side. Could you equalize the water level on each side of the tube by adding solute, and if so, how?

[link] Yes, you can equalize the water level by adding the solute to the left side of the tube such that water moves toward the left until the water levels are equal.

[link] Which of the following statements is false?

  1. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the xylem. Transpiration draws water from the leaf.
  2. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the phloem. Transpiration draws water from the leaf.
  3. Water potential decreases from the roots to the top of the plant.
  4. Water enters the plants through root hairs and exits through stoma.

[link] B.

Questions & Answers

what is mutation
Janga Reply
what is a cell
Sifune Reply
how is urine form
Sifune
what is antagonism?
mahase Reply
classification of plants, gymnosperm features.
Linsy Reply
what is the features of gymnosperm
Linsy
how many types of solid did we have
Samuel Reply
what is an ionic bond
Samuel
What is Atoms
Daprince Reply
what is fallopian tube
Merolyn
what is bladder
Merolyn
what's bulbourethral gland
Eduek Reply
urine is formed in the nephron of the renal medulla in the kidney. It starts from filtration, then selective reabsorption and finally secretion
onuoha Reply
State the evolution relation and relevance between endoplasmic reticulum and cytoskeleton as it relates to cell.
Jeremiah
what is heart
Konadu Reply
how is urine formed in human
Konadu
how is urine formed in human
Rahma
what is the diference between a cavity and a canal
Pelagie Reply
what is the causative agent of malaria
Diamond
malaria is caused by an insect called mosquito.
Naomi
Malaria is cause by female anopheles mosquito
Isaac
Malaria is caused by plasmodium Female anopheles mosquitoe is d carrier
Olalekan
a canal is more needed in a root but a cavity is a bad effect
Commander
what are pathogens
Don Reply
In biology, a pathogen (Greek: πάθος pathos "suffering", "passion" and -γενής -genēs "producer of") in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s.[1][2
Zainab
A virus
Commander
Definition of respiration
Muhsin Reply
respiration is the process in which we breath in oxygen and breath out carbon dioxide
Achor
how are lungs work
Commander
where does digestion begins
Achiri Reply
in the mouth
EZEKIEL
what are the functions of follicle stimulating harmones?
Rashima Reply
stimulates the follicle to release the mature ovum into the oviduct
Davonte
what are the functions of Endocrine and pituitary gland
Chinaza
endocrine secrete hormone and regulate body process
Achor
while pituitary gland is an example of endocrine system and it's found in the Brain
Achor
what's biology?
Egbodo Reply
Biology is the study of living organisms, divided into many specialized field that cover their morphology, physiology,anatomy, behaviour,origin and distribution.
Lisah
biology is the study of life.
Alfreda
Biology is the study of how living organisms live and survive in a specific environment
Sifune
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Biology 1308 bonus credit chapters--from openstax "biology". OpenStax CNX. Apr 25, 2013 Download for free at https://legacy.cnx.org/content/col11516/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology 1308 bonus credit chapters--from openstax "biology"' conversation and receive update notifications?

Ask