<< Chapter < Page Chapter >> Page >
This module is based upon the Connexions module entitled Photolithography by Bill Wilson.

Actually, implants (especially for moats) are usually done at a sufficiently high energy so that the dopant(phosphorus) is already pretty far into the substrate (often several microns or so), even before the diffusion starts. Theanneal/diffusion moves the impurities into the wafer a bit more, and as we shall see also makes the n-region grow larger.

"The n-region"! We have not said a thing about how we make our moat in only certain areas of the wafer. Fromthe description we have so far, is seems we have simply built an n-type layer over the whole surface of the wafer. This would bebad! We need to come up with some kind of "window" to only permit the implanting impurities to enter the silicon waferwhere we want them and not elsewhere. We will do this by constructing an implantation "barrier".

To do this, the first thing we do is grow a layer of silicon dioxide over the entire surface of the wafer. Wetalked about oxide growth when we were discussing MOSFETs but let's go into a little more detail. You can grow oxide in eithera dry oxygen atmosphere, or in a an atmosphere which contains water vapor, or steam. In [link] , we show oxide thickness as a function of time for growth with steam. Dry O 2 does not behave too much differently, the rate is just somewhat slower.

A plot of oxide thickness as a function of time.

On top of the oxide, we are now going to deposit yet another material. This is silicon nitride, Si 3 N 4 or just plain "nitride" as it is usually called. Silicon nitride is deposited through a method calledchemical vapor deposition or "CVD". The usual technique is to react dichlorosilane and ammonia in a hot walled low pressurechemical vapor deposition system (LPCVD). The reaction is:

Silicon nitride is a good barrier for impurities, oxygen and other things which do not want to get into the wafer. Take alook at [link] and see what we have so far. A word about scale and dimensions. The silicon wafer is about250 μm thick (about 0.01") since it has to be strong enough not to break as it is being handled. The two deposited layersare each about 1 μm thick, so they should actually be drawn as lines thinner than the other lines in the figure. This wouldobviously make the whole idea of a sketch ridiculous, so we will leave things distorted as they are, keeping in mind that thedeposited and diffused layers are actually much thinner than the rest of wafer, whichreally does not do anything except support the active circuits up on top.

Initial wafer configuration.

Now what we want to do is remove part of the nitride, so we can make our n-well, but not put inphosphorous where do not want it. We do this with a processes called photolithography and etching respectively. First thing we do is coat the wafer with yetanother layer of material. This is a liquid called photoresist and it is applied through a processcalled spin-coating. The wafer is put on a vacuum chuck, and a layer of liquid photoresist is sprayed uncap of thewafer. The chuck is then spun rapidly, getting to several thousand RPM in a small fraction of a second. Centrifugal forcecauses the resist to spread out uniformly across the wafer surface. The solvent for thephotoresist is quite volatile and so the layer of photoresist dries while the wafer is still spinning, resulting in a thin,uniform coating across the wafer [link] .

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?