<< Chapter < Page Chapter >> Page >
This module establishes a number of results concerning various L1 minimization algorithms designed for sparse signal recovery from noisy measurements. The results in this module apply to both bounded noise as well as Gaussian (or more generally, sub-Gaussian) noise.

The ability to perfectly reconstruct a sparse signal from noise-free measurements represents a promising result. However, in most real-world systems the measurements are likely to be contaminated by some form of noise. For instance, in order to process data in a computer we must be able to represent it using a finite number of bits, and hence the measurements will typically be subject to quantization error. Moreover, systems which are implemented in physical hardware will be subject to a variety of different types of noise depending on the setting.

Perhaps somewhat surprisingly, one can show that it is possible to modify

x ^ = arg min z z 1 subject to z B ( y ) .

to stably recover sparse signals under a variety of common noise models  [link] , [link] , [link] . As might be expected, the restricted isometry property (RIP) is extremely useful in establishing performance guarantees in noise.

In our analysis we will make repeated use of Lemma 1 from "Noise-free signal recovery" , so we repeat it here for convenience.

Suppose that Φ satisfies the RIP of order 2 K with δ 2 K < 2 - 1 . Let x , x ^ R N be given, and define h = x ^ - x . Let Λ 0 denote the index set corresponding to the K entries of x with largest magnitude and Λ 1 the index set corresponding to the K entries of h Λ 0 c with largest magnitude. Set Λ = Λ 0 Λ 1 . If x ^ 1 x 1 , then

h 2 C 0 σ K ( x ) 1 K + C 1 Φ h Λ , Φ h h Λ 2 .

where

C 0 = 2 1 - ( 1 - 2 ) δ 2 K 1 - ( 1 + 2 ) δ 2 K , C 1 = 2 1 - ( 1 + 2 ) δ 2 K .

Bounded noise

We first provide a bound on the worst-case performance for uniformly bounded noise, as first investigated in  [link] .

(theorem 1.2 of [link] )

Suppose that Φ satisfies the RIP of order 2 K with δ 2 K < 2 - 1 and let y = Φ x + e where e 2 ϵ . Then when B ( y ) = { z : Φ z - y 2 ϵ } , the solution x ^ to [link] obeys

x ^ - x 2 C 0 σ K ( x ) 1 K + C 2 ϵ ,

where

C 0 = 2 1 - ( 1 - 2 ) δ 2 K 1 - ( 1 + 2 ) δ 2 K , C 2 = 4 1 + δ 2 K 1 - ( 1 + 2 ) δ 2 K .

We are interested in bounding h 2 = x ^ - x 2 . Since e 2 ϵ , x B ( y ) , and therefore we know that x ^ 1 x 1 . Thus we may apply [link] , and it remains to bound Φ h Λ , Φ h . To do this, we observe that

Φ h 2 = Φ ( x ^ - x ) 2 = Φ x ^ - y + y - Φ x 2 Φ x ^ - y 2 + y - Φ x 2 2 ϵ

where the last inequality follows since x , x ^ B ( y ) . Combining this with the RIP and the Cauchy-Schwarz inequality we obtain

Φ h Λ , Φ h Φ h Λ 2 Φ h 2 2 ϵ 1 + δ 2 K h Λ 2 .

Thus,

h 2 C 0 σ K ( x ) 1 K + C 1 2 ϵ 1 + δ 2 K = C 0 σ K ( x ) 1 K + C 2 ϵ ,

completing the proof.

In order to place this result in context, consider how we would recover a sparse vector x if we happened to already know the K locations of the nonzero coefficients, which we denote by Λ 0 . This is referred to as the oracle estimator . In this case a natural approach is to reconstruct the signal using a simple pseudoinverse:

x ^ Λ 0 = Φ Λ 0 y = ( Φ Λ 0 T Φ Λ 0 ) - 1 Φ Λ 0 T y x ^ Λ 0 c = 0 .

The implicit assumption in [link] is that Φ Λ 0 has full column-rank (and hence we are considering the case where Φ Λ 0 is the M × K matrix with the columns indexed by Λ 0 c removed) so that there is a unique solution to the equation y = Φ Λ 0 x Λ 0 . With this choice, the recovery error is given by

x ^ - x 2 = ( Φ Λ 0 T Φ Λ 0 ) - 1 Φ Λ 0 T ( Φ x + e ) - x 2 = ( Φ Λ 0 T Φ Λ 0 ) - 1 Φ Λ 0 T e 2 .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask