<< Chapter < Page Chapter >> Page >


Graad 9

Vierkante, perspektieftekening, transformasies

Module 23

Om begrip van vierhoeke en hul eienskappe toe te pas in probleme


Om begrip van vierhoeke en hul eienskappe toe te pas in probleme

[LU 3.7, 4.4]

  • Die sketse vir hierdie gedeelte is op ‘n aparte problemeblad. Verwys daarna vir die volgende vrae.
  • Werk soos volg in pare: Bestudeer elke probleem onafhanklik totdat jy dit opgelos het, of so ver gekom het as jy kan. Verduidelik dan jou oplossing stap-vir-stap aan jou maat, totdat hy dit goed genoeg begryp om dit te kan neerskryf. By die volgende probleem is dit jou maat se beurt om sy oplossing aan jou te verduidelik sodat jy dit kan neerskryf. Onthou dat julle redes of verduidelikings moet verskaf vir alle bewerings wat gemaak word.

1. Bereken die waardes van a, b, c , ens. vanuit die inligting by die vraag en in die skets, en beantwoord dan die vraag wat daarop volg.

1.1 In die skets is ‘n vierkant met een sy 3 cm. a = die aanligggende sy.

b = die hoeklyn. c = die oppervlakte van die vierkant.

Hoekom maak die hoeklyn ‘n 45 ° hoek met die sy?

1.2 Dit is ‘n ruit met lang hoeklyn = 8 cm en kort hoeklyn = 6 cm. a = sylengte.

b = oppervlakte van ruit.

Waarom mag jy die Stelling van Pythagoras hier gebruik?

1.3 Die skets is van ‘n reghoek met kort sy = 5 cm en ‘n hoeklyn = 13 cm.

a = die lang sy. b = oppervlakte van die reghoek.

Waarom is die ander hoeklyn ook 13 cm?

1.4 Die parallelogram het een binnehoek = 65°, hoogte = 3 cm en lang sy = 9 cm.

a = klein binnehoek. b = groot binnehoek. c = oppervlakte van parallelogram

Verduidelik waarom hierdie parallelogram dieselfde oppervlakte het as ‘n 3 cm by 9 cm reghoek.

2. Bereken die waarde van x vanuit die inligting in die sketse.

2.1 Die driehoek is gelykbenig met een van die gelyke sye 15 cm en oppervlakte = 45 cm 2 .

x = hoogte van driehoek.

2.2 Hierdie trapesium se langste sy is 23 cm en die sy wat ewewydig daaraan is, is 15 cm.

Die hoogte is = 8 cm. x = oppervlakte van trapesium.

Waarom is die twee gemerkte binnehoeke supplementêr?

2.3 Die vlieër se oppervlakte is 162 cm 2 en die kort hoeklyn is 12 cm. x = lang hoeklyn.

Waarom is die som van die vlieër se binnehoeke 360 ° ?

2.4 In hierdie skets is dieselfde vlieër van vraag 2.3 in drie driehoeke met gelyke oppervlaktes verdeel (ignoreer die stippellyn). x = boonste gedeelte van die lang hoeklyn.

3. Die volgende probleme bevat inligting waaruit jy ‘n vergelyking moet vorm. Gebruik die kenmerke van die figure. As jy dan die vergelyking oplos, gee dit jou die waarde van x .

3.1 Twee van die hoeke van die ruit is 3 x en x onderskeidelik.

Hoekom kan hierdie figuur nie ‘n vierkant wees nie?

3.2 In die parallelogram is die groottes van twee teenoorstaande binnehoeke x + 30° en 2 x – 10° onderskeidelik.

Verduidelik waarom die gemerkte hoek 110 ° is .

3.3 Die trapesium het twee hoeke van x – 20° en x + 40° onderskeidelik.

Waarom is dit nie ‘n parallelogram nie?

3.4 Die kort hoeklyn van die ruit is getrek; die hoeklyn maak een hoek van 50°, en een binnehoek van die ruit is gemerk met ‘n x .

Werkvel vir Leereenheid 1

Problemeblad vir Leereenheid 1

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Wiskunde graad 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11055/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 9' conversation and receive update notifications?