# 4.2 Non-right triangles: law of cosines  (Page 4/8)

 Page 4 / 8

## Heron’s formula

Heron’s formula finds the area of oblique triangles in which sides $\text{\hspace{0.17em}}a,b\text{,}$ and $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ are known.

$\text{Area}=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}$

where $\text{\hspace{0.17em}}s=\frac{\left(a+b+c\right)}{2}\text{\hspace{0.17em}}$ is one half of the perimeter of the triangle, sometimes called the semi-perimeter.

## Using heron’s formula to find the area of a given triangle

Find the area of the triangle in [link] using Heron’s formula.

First, we calculate $\text{\hspace{0.17em}}s.$

$\begin{array}{l}\begin{array}{l}\\ s=\frac{\left(a+b+c\right)}{2}\end{array}\hfill \\ s=\frac{\left(10+15+7\right)}{2}=16\hfill \end{array}$

Then we apply the formula.

$\begin{array}{l}\begin{array}{l}\\ \text{Area}=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\end{array}\hfill \\ \text{Area}=\sqrt{16\left(16-10\right)\left(16-15\right)\left(16-7\right)}\hfill \\ \text{Area}\approx 29.4\hfill \end{array}$

The area is approximately 29.4 square units.

Use Heron’s formula to find the area of a triangle with sides of lengths $\text{\hspace{0.17em}}a=29.7\text{\hspace{0.17em}}\text{ft},b=42.3\text{\hspace{0.17em}}\text{ft},\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}c=38.4\text{\hspace{0.17em}}\text{ft}.$

Area = 552 square feet

## Applying heron’s formula to a real-world problem

A Chicago city developer wants to construct a building consisting of artist’s lofts on a triangular lot bordered by Rush Street, Wabash Avenue, and Pearson Street. The frontage along Rush Street is approximately 62.4 meters, along Wabash Avenue it is approximately 43.5 meters, and along Pearson Street it is approximately 34.1 meters. How many square meters are available to the developer? See [link] for a view of the city property.

Find the measurement for $\text{\hspace{0.17em}}s,\text{\hspace{0.17em}}$ which is one-half of the perimeter.

$\begin{array}{l}s=\frac{\left(62.4+43.5+34.1\right)}{2}\hfill \\ s=70\text{\hspace{0.17em}}\text{m}\hfill \end{array}$

Apply Heron’s formula.

$\begin{array}{l}\text{Area}=\sqrt{70\left(70-62.4\right)\left(70-43.5\right)\left(70-34.1\right)}\hfill \\ \text{Area}=\sqrt{506,118.2}\hfill \\ \text{Area}\approx 711.4\hfill \end{array}$

The developer has about 711.4 square meters.

Find the area of a triangle given $\text{\hspace{0.17em}}a=4.38\text{\hspace{0.17em}}\text{ft}\text{\hspace{0.17em}},b=3.79\text{\hspace{0.17em}}\text{ft,}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}c=5.22\text{\hspace{0.17em}}\text{ft}\text{.}$

Access these online resources for additional instruction and practice with the Law of Cosines.

## Key equations

 Law of Cosines $\begin{array}{l}{a}^{2}={b}^{2}+{c}^{2}-2bc\mathrm{cos}\text{\hspace{0.17em}}\alpha \hfill \\ {b}^{2}={a}^{2}+{c}^{2}-2ac\mathrm{cos}\text{\hspace{0.17em}}\beta \hfill \\ {c}^{2}={a}^{2}+{b}^{2}-2abcos\text{\hspace{0.17em}}\gamma \hfill \end{array}$ Heron’s formula

## Key concepts

• The Law of Cosines defines the relationship among angle measurements and lengths of sides in oblique triangles.
• The Generalized Pythagorean Theorem is the Law of Cosines for two cases of oblique triangles: SAS and SSS. Dropping an imaginary perpendicular splits the oblique triangle into two right triangles or forms one right triangle, which allows sides to be related and measurements to be calculated. See [link] and [link] .
• The Law of Cosines is useful for many types of applied problems. The first step in solving such problems is generally to draw a sketch of the problem presented. If the information given fits one of the three models (the three equations), then apply the Law of Cosines to find a solution. See [link] and [link] .
• Heron’s formula allows the calculation of area in oblique triangles. All three sides must be known to apply Heron’s formula. See [link] and See [link] .

## Verbal

If you are looking for a missing side of a triangle, what do you need to know when using the Law of Cosines?

two sides and the angle opposite the missing side.

If you are looking for a missing angle of a triangle, what do you need to know when using the Law of Cosines?

Explain what $\text{\hspace{0.17em}}s\text{\hspace{0.17em}}$ represents in Heron’s formula.

$\text{\hspace{0.17em}}s\text{\hspace{0.17em}}$ is the semi-perimeter, which is half the perimeter of the triangle.

can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!