<< Chapter < Page Chapter >> Page >

Carbon-zinc dry cells (sometimes referred to as non-alkaline cells) have an emf of 1.54 V, and they are produced as single cells or in various combinations to form other voltages. (a) How many 1.54-V cells are needed to make the common 9-V battery used in many small electronic devices? (b) What is the actual emf of the approximately 9-V battery? (c) Discuss how internal resistance in the series connection of cells will affect the terminal voltage of this approximately 9-V battery.

What is the output voltage of a 3.0000-V lithium cell in a digital wristwatch that draws 0.300 mA, if the cell’s internal resistance is 2 . 00 Ω size 12{2 "." "00" %OMEGA } {} ?

2.9994 V

(a) What is the terminal voltage of a large 1.54-V carbon-zinc dry cell used in a physics lab to supply 2.00 A to a circuit, if the cell’s internal resistance is 0 . 100 Ω size 12{0 "." "100" %OMEGA } {} ? (b) How much electrical power does the cell produce? (c) What power goes to its load?

What is the internal resistance of an automobile battery that has an emf of 12.0 V and a terminal voltage of 15.0 V while a current of 8.00 A is charging it?

0 . 375 Ω size 12{0 "." "375" %OMEGA } {}

(a) Find the terminal voltage of a 12.0-V motorcycle battery having a 0 . 600-Ω size 12{0 "." "600"- %OMEGA } {} internal resistance, if it is being charged by a current of 10.0 A. (b) What is the output voltage of the battery charger?

A car battery with a 12-V emf and an internal resistance of 0 . 050 Ω size 12{0 "." "050" %OMEGA } {} is being charged with a current of 60 A. Note that in this process the battery is being charged. (a) What is the potential difference across its terminals? (b) At what rate is thermal energy being dissipated in the battery? (c) At what rate is electric energy being converted to chemical energy? (d) What are the answers to (a) and (b) when the battery is used to supply 60 A to the starter motor?

The hot resistance of a flashlight bulb is 2 . 30 Ω size 12{2 "." "30" %OMEGA } {} , and it is run by a 1.58-V alkaline cell having a 0 . 100-Ω size 12{0 "." "100"- %OMEGA } {} internal resistance. (a) What current flows? (b) Calculate the power supplied to the bulb using I 2 R bulb size 12{I rSup { size 8{2} } R rSub { size 8{"bulb"} } } {} . (c) Is this power the same as calculated using V 2 R bulb size 12{ { {V rSup { size 8{2} } } over {R rSub { size 8{"bulb"} } } } } {} ?

(a) 0.658 A

(b) 0.997 W

(c) 0.997 W; yes

The label on a portable radio recommends the use of rechargeable nickel-cadmium cells (nicads), although they have a 1.25-V emf while alkaline cells have a 1.58-V emf. The radio has a 3 . 20-Ω size 12{3 "." "20"- %OMEGA } {} resistance. (a) Draw a circuit diagram of the radio and its batteries. Now, calculate the power delivered to the radio. (b) When using Nicad cells each having an internal resistance of 0 . 0400 Ω size 12{0 "." "0400" %OMEGA } {} . (c) When using alkaline cells each having an internal resistance of 0 . 200 Ω size 12{0 "." "200" %OMEGA } {} . (d) Does this difference seem significant, considering that the radio’s effective resistance is lowered when its volume is turned up?

An automobile starter motor has an equivalent resistance of 0 . 0500 Ω size 12{0 "." "0500" %OMEGA } {} and is supplied by a 12.0-V battery with a 0 . 0100-Ω size 12{0 "." "0100"- %OMEGA } {} internal resistance. (a) What is the current to the motor? (b) What voltage is applied to it? (c) What power is supplied to the motor? (d) Repeat these calculations for when the battery connections are corroded and add 0 . 0900 Ω size 12{0 "." "0900" %OMEGA } {} to the circuit. (Significant problems are caused by even small amounts of unwanted resistance in low-voltage, high-current applications.)

(a) 200 A

(b) 10.0 V

(c) 2.00 kW

(d) 0 . 1000 Ω ; 80 . 0 A, 4 . 0 V, 320 W size 12{0 "." "1000" %OMEGA ;" 80" "." "0 A, 4" "." "0 V, 320 W"} {}

A child’s electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0 . 0200 Ω size 12{0 "." "0200" %OMEGA } {} in series with a 1.53-V carbon-zinc dry cell having a 0 . 100-Ω size 12{0 "." "100"- %OMEGA } {} internal resistance. The load resistance is 10 . 0 Ω size 12{"10" "." 0 %OMEGA } {} . (a) Draw a circuit diagram of the toy and its batteries. (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?

(a) What is the internal resistance of a voltage source if its terminal voltage drops by 2.00 V when the current supplied increases by 5.00 A? (b) Can the emf of the voltage source be found with the information supplied?

(a) 0 . 400 Ω size 12{0 "." "400" %OMEGA } {}

(b) No, there is only one independent equation, so only r size 12{r} {} can be found.

A person with body resistance between his hands of 10 . 0 k Ω size 12{"10" "." 0" k" %OMEGA } {} accidentally grasps the terminals of a 20.0-kV power supply. (Do NOT do this!) (a) Draw a circuit diagram to represent the situation. (b) If the internal resistance of the power supply is 2000 Ω size 12{"2000" %OMEGA } {} , what is the current through his body? (c) What is the power dissipated in his body? (d) If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be for the maximum current in this situation to be 1.00 mA or less? (e) Will this modification compromise the effectiveness of the power supply for driving low-resistance devices? Explain your reasoning.

Electric fish generate current with biological cells called electroplaques, which are physiological emf devices. The electroplaques in the South American eel are arranged in 140 rows, each row stretching horizontally along the body and each containing 5000 electroplaques. Each electroplaque has an emf of 0.15 V and internal resistance of 0 . 25 Ω size 12{0 "." "25" %OMEGA } {} . If the water surrounding the fish has resistance of 800 Ω size 12{"800" %OMEGA } {} , how much current can the eel produce in water from near its head to near its tail?

Integrated Concepts

A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in º C/min size 12{°"C/min"} {} ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0 . 300 kcal/kg º C size 12{0 "." "300"" kcal/kg" cdot °C} {} , assuming no heat escapes?

Unreasonable Results

A 1.58-V alkaline cell with a 0 . 200-Ω size 12{0 "." "200"- %OMEGA } {} internal resistance is supplying 8.50 A to a load. (a) What is its terminal voltage? (b) What is the value of the load resistance? (c) What is unreasonable about these results? (d) Which assumptions are unreasonable or inconsistent?

(a) –0.120 V

(b) - 1 . 41 × 10 2 Ω size 12{ +- 1 "." "41"´"10" rSup { size 8{-2} } %OMEGA } {}

(c) Negative terminal voltage; negative load resistance.

(d) The assumption that such a cell could provide 8.50 A is inconsistent with its internal resistance.

Unreasonable Results

(a) What is the internal resistance of a 1.54-V dry cell that supplies 1.00 W of power to a 15 . 0-Ω size 12{"15" "." 0- %OMEGA } {} bulb? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
I'm not good at math so would you help me
what is the problem that i will help you to self with?
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?