<< Chapter < Page Chapter >> Page >
Definition of the complex Fourier series.

In an earlier module , we showed that a square wave could be expressed as a superposition of pulses. As useful asthis decomposition was in this example, it does not generalize well to other periodic signals:How can a superposition of pulses equal a smooth signal like a sinusoid?Because of the importance of sinusoids to linear systems, you might wonder whether they could be added together to represent alarge number of periodic signals. You would be right and in good company as well. Euler and Gauss in particular worried about this problem, and Jean Baptiste Fourier got the credit even though tough mathematical issues were notsettled until later. They worked on what is now known as the Fourier series : representing any periodic signal as a superposition of sinusoids.

But the Fourier series goes well beyond being another signal decomposition method.Rather, the Fourier series begins our journey to appreciate how a signal can be described in either the time-domain or the frequency-domain with no compromise. Let s t be a periodic signal with period T . We want to show that periodic signals, even those that haveconstant-valued segments like a square wave, can be expressed as sum of harmonically related sine waves: sinusoids having frequencies that are integer multiples of the fundamental frequency . Because the signal has period T , the fundamental frequency is 1 T . The complex Fourier series expresses the signal as a superposition ofcomplex exponentials having frequencies k T , k 1 0 1 .

s t k c k 2 k t T
with c k 1 2 a k b k . The real and imaginary parts of the Fourier coefficients c k are written in this unusual way for convenience in defining the classic Fourier series.The zeroth coefficient equals the signal's average value and is real- valued for real-valued signals: c 0 a 0 . The family of functions 2 k t T are called basis functions and form the foundation of the Fourier series. No matter what theperiodic signal might be, these functions are always present and form the representation's building blocks. They depend on thesignal period T , and are indexed by k .
Assuming we know the period, knowing the Fourier coefficientsis equivalent to knowing the signal. Thus, it makes no difference if we have a time-domain or a frequency-domain characterization of the signal.

What is the complex Fourier series for a sinusoid?

Because of Euler's relation,

2 f t 1 2 2 f t 1 2 2 f t
Thus, c 1 1 2 , c 1 1 2 , and the other coefficients are zero.

Got questions? Get instant answers now!

To find the Fourier coefficients, we note the orthogonality property

t 0 T 2 k t T 2 l t T T k l 0 k l
Assuming for the moment that the complex Fourier series "works," we can find a signal's complex Fourier coefficients, its spectrum , by exploiting the orthogonality properties of harmonically related complexexponentials. Simply multiply each side of [link] by 2 l t and integrate over the interval 0 T .
c k 1 T t 0 T s t 2 k t T c 0 1 T t 0 T s t

Finding the Fourier series coefficients for the square wave sq T t is very simple. Mathematically, this signal can be expressed as sq T t 1 0 t T 2 1 T 2 t T The expression for the Fourier coefficients has the form

c k 1 T t 0 T 2 2 k t T 1 T t T 2 T 2 k t T
When integrating an expression containing , treat it just like any other constant.
The two integrals are very similar, one equaling the negative of theother. The final expression becomes
c k 2 2 k 1 k 1 2 k k odd 0 k even
sq t k k -3 -1 1 3 2 k 2 k t T
Consequently, the square wave equals a sum of complex exponentials, but only those having frequencies equal to odd multiples of thefundamental frequency 1 T . The coefficients decay slowly as the frequency index k increases. This index corresponds to the k -th harmonic of the signal's period.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask