<< Chapter < Page Chapter >> Page >
First module of the two-rooms analogy to solving problems in the time and frequency domains.

When we find the differential equation relating the source and the output, we are faced with solving the circuit in what isknown as the time domain . What we emphasize here is that it is often easier to find the output if we useimpedances. Because impedances depend only on frequency, we find ourselves in the frequency domain . A common error in using impedances is keeping the time-dependent part,the complex exponential, in the fray. The entire point of using impedances is to get rid of time and concentrate onfrequency. Only after we find the result in the frequency domain do we go back to the time domain and put things back togetheragain.

To illustrate how the time domain, the frequency domain and impedances fit together, consider the time domain and frequencydomain to be two work rooms. Since you can't be two places at the same time, you are faced with solving your circuit problemin one of the two rooms at any point in time. Impedances and complex exponentials are the way you get between the two rooms.Security guards make sure you don't try to sneak time domain variables into the frequency domain room and vice versa. [link] shows how this works.

Two rooms

The time and frequency domains are linked by assuming signals are complex exponentials. In the time domain, signals canhave any form. Passing into the frequency domain “work room,” signals are represented entirely by complex amplitudes.

As we unfold the impedance story, we'll see that the powerful use of impedances suggested by Steinmetz greatly simplifies solving circuits, alleviates us from solving differential equations, and suggests a general way of thinkingabout circuits. Because of the importance of this approach, let's go over how it works.

  1. Even though it's not, pretend the source is a complex exponential. We do this because the impedance approachsimplifies finding how input and output are related. If it were a voltage source having voltage v in p t (a pulse), still let v in V in 2 f t . We'll learn how to "get the pulse back" later.
  2. With a source equaling a complex exponential, all variables in a linear circuit will also be complex exponentials having the same frequency. The circuit's only remaining "mystery" is what each variable's complex amplitudemight be. To find these, we consider the source to be a complex number ( V in here) and the elements to be impedances.
  3. We can now solve using series and parallel combination ruleshow the complex amplitude of any variable relates to the sources complex amplitude.

To illustrate the impedance approach, we refer to the R C circuit ( [link] ) below, and we assume that v in V in 2 f t .

Simple circuits

A simple R C circuit.
The impedance counterpart for the R C circuit. Note that the source and output voltage are now complexamplitudes.

Using impedances, the complex amplitude of the output voltage V out can be found using voltage divider: V out Z C Z C Z R V in V out 1 2 f C 1 2 f C R V in V out 1 2 f R C 1 V in

Got questions? Get instant answers now!

If we refer to the differential equation for this circuit (shown in Circuits with Capacitors and Inductors to be R C t v out v out v in ), letting the output and input voltages be complex exponentials, we obtain the same relationship between theircomplex amplitudes. Thus, using impedances is equivalent to using the differential equation and solving it when the sourceis a complex exponential.

In fact, we can find the differential equation directly using impedances. If we cross-multiply the relation between input and output amplitudes, V out 2 f R C 1 V in and then put the complex exponentials back in, we have R C 2 f V out 2 f t V out 2 f t V in 2 f t In the process of defining impedances, note that the factor 2 f arises from the derivative of a complex exponential. We can reverse the impedance process, and revertback to the differential equation. R C t v out v out v in This is the same equation that was derived much more tediously in Circuits with Capacitors and Inductors . Finding the differential equation relating output to input is far simpler when we use impedancesthan with any other technique.

Suppose you had an expression where a complex amplitude was divided by 2 f . What time-domain operation corresponds to this division?

Division by 2 f arises from integrating a complex exponential. Consequently, 1 2 f V t V 2 f t

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask