<< Chapter < Page Chapter >> Page >
Discussing the results if all sources in the circuit are complex exponentials.

Rather than solving the differential equation that arises in circuits containing capacitors and inductors, let's pretend thatall sources in the circuit are complex exponentials having the same frequency. Although this pretense can only be mathematically true, this fiction will greatly easesolving the circuit no matter what the source really is.

Simple circuit

A simple RC circuit.

For the above example RC circuit ( [link] ), let v in V in 2 f t . The complex amplitude V in determines the size of the source and its phase. The critical consequence of assuming that sources have this form is that all voltages and currents in the circuit are also complex exponentials, having amplitudes governed byKVL, KCL, and the v-i relations and the same frequency as the source. To appreciate why this should betrue, let's investigate how each circuit element behaves when either the voltage or current is a complex exponential. For theresistor, v R i . When v V 2 f t ; then i V R 2 f t . Thus, if the resistor's voltage is a complex exponential, so isthe current, with an amplitude I V R (determined by the resistor's v-i relation) and a frequency the same as the voltage. Clearly, if the currentwere assumed to be a complex exponential, so would the voltage. For a capacitor, i C t v . Letting the voltage be a complex exponential, we have i C V 2 f 2 f t . The amplitude of this complex exponential is I C V 2 f . Finally, for the inductor, where v L t i , assuming the current to be a complex exponential results in thevoltage having the form v L I 2 f 2 f t , making its complex amplitude V L I 2 f .

The major consequence of assuming complex exponential voltage and currents is that the ratio Z V I for each element does not depend on time, but does depend on source frequency . This quantity is known as the element's impedance .

Impedance

Resistor: Z R R
Capacitor: Z C 1 2 f C
Inductor: Z L 2 f L

The impedance is, in general, a complex-valued, frequency-dependent quantity. For example, the magnitude of thecapacitor's impedance is inversely related to frequency, and has a phase of 2 . This observation means that if the current is a complexexponential and has constant amplitude, the amplitude of the voltage decreases with frequency.

Let's consider Kirchoff's circuit laws. When voltages around aloop are all complex exponentials of the same frequency, we have

n n v n n n V n 2 f t 0
which means
n n V n 0
the complex amplitudes of the voltages obey KVL . We can easily imagine that the complex amplitudes of the currents obey KCL.

What we have discovered is that source(s) equaling a complex exponential of the same frequency forces all circuit variablesto be complex exponentials of the same frequency. Consequently, the ratio of voltage to current for each element equals theratio of their complex amplitudes, which depends only on the source's frequency and element values.

This situation occurs because the circuit elements are linearand time-invariant. For example, suppose we had a circuit element where the voltage equaled the square of the current: v t K i t 2 . If i t I 2 f t , v t K I 2 2 2 f t , meaning that voltage and current no longer had the samefrequency and that their ratio was time-dependent.

Because for linear circuit elements the complex amplitude of voltage is proportional to the complex amplitude ofcurrent— V Z I — assuming complex exponential sources means circuitelements behave as if they were resistors, where instead of resistance, we use impedance. Because complex amplitudes for voltage and current also obey Kirchoff's laws, we can solvecircuits using voltage and current divider and the series and parallel combination rules by considering the elements to beimpedances.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask