<< Chapter < Page Chapter >> Page >

A 1100-kg car pulls a boat on a trailer. (a) What total force resists the motion of the car, boat, and trailer, if the car exerts a 1900-N force on the road and produces an acceleration of 0 . 550 m/s 2 size 12{0 "." "550 m/s" rSup { size 8{2} } } {} ? The mass of the boat plus trailer is 700 kg. (b) What is the force in the hitch between the car and the trailer if 80% of the resisting forces are experienced by the boat and trailer?

(a) 910 N size 12{"910"N} {}

(b) 1 . 11 × 10 3 N size 12{1 "." "11" times "10" rSup { size 8{3} } " N"} {}

(a) Find the magnitudes of the forces F 1 size 12{F rSub { size 8{1} } } {} and F 2 size 12{F rSub { size 8{2} } } {} that add to give the total force F tot size 12{F rSub { size 8{"tot"} } } {} shown in [link] . This may be done either graphically or by using trigonometry. (b) Show graphically that the same total force is obtained independent of the order of addition of F 1 size 12{F rSub { size 8{1} } } {} and F 2 size 12{F rSub { size 8{2} } } {} . (c) Find the direction and magnitude of some other pair of vectors that add to give F tot size 12{F} {} . Draw these to scale on the same drawing used in part (b) or a similar picture.

A right triangle is shown made up of three vectors. The first vector, F sub one, is along the triangle’s base toward the right; the second vector, F sub two, is along the perpendicular side pointing upward; and the third vector, F sub tot, is along the hypotenuse pointing up the incline. The magnitude of F sub tot is twenty newtons. In a free-body diagram, F sub one is shown by an arrow pointing right and F sub two is shown by an arrow acting vertically upward.

Two children pull a third child on a snow saucer sled exerting forces F 1 and F 2 as shown from above in [link] . Find the acceleration of the 49.00-kg sled and child system. Note that the direction of the frictional force is unspecified; it will be in the opposite direction of the sum of F 1 and F 2 .

a = 0.139 m/s , θ = 12.4º north of east

An overhead view of a child sitting on a snow saucer sled. Two forces, F sub one equal to ten newtons and F sub two equal to eight newtons, are acting toward the right. F sub one makes an angle of forty-five degrees from the x axis and F sub two makes an angle of thirty degrees from the x axis in a clockwise direction. A friction force f is equal to seven point five newtons, shown by a vector pointing in negative x direction. In the free-body diagram, F sub one and F sub two are shown by arrows toward the right, making a forty-five degree angle above the horizontal and a thirty-degree angle below the horizontal respectively. The friction force f is shown by an arrow along the negative x axis.
An overhead view of the horizontal forces acting on a child’s snow saucer sled.

Suppose your car was mired deeply in the mud and you wanted to use the method illustrated in [link] to pull it out. (a) What force would you have to exert perpendicular to the center of the rope to produce a force of 12,000 N on the car if the angle is 2.00°? In this part, explicitly show how you follow the steps in the Problem-Solving Strategy for Newton’s laws of motion. (b) Real ropes stretch under such forces. What force would be exerted on the car if the angle increases to 7.00° and you still apply the force found in part (a) to its center?

What force is exerted on the tooth in [link] if the tension in the wire is 25.0 N? Note that the force applied to the tooth is smaller than the tension in the wire, but this is necessitated by practical considerations of how force can be applied in the mouth. Explicitly show how you follow steps in the Problem-Solving Strategy for Newton’s laws of motion.

  1. Use Newton’s laws since we are looking for forces.
  2. Draw a free-body diagram:
    A horizontal dotted line with two vectors extending downward from the mid-point of the dotted line, both at angles of fifteen degrees. A third vector points straight downward from the intersection of the first two angles, bisecting them; it is perpendicular to the dotted line.
  3. The tension is given as T = 25.0 N. Find F app . Using Newton’s laws gives: Σ F y = 0, so that applied force is due to the y -components of the two tensions: F app = 2 T sin θ = 2 ( 25.0 N ) sin ( 15º ) = 12.9 N

    The x -components of the tension cancel. F x = 0 .

  4. This seems reasonable, since the applied tensions should be greater than the force applied to the tooth.
Cross-section of jaw with sixteen teeth is shown. Braces are along the outside of the teeth. Three forces are acting on the protruding tooth. The applied force, F sub app, is shown by an arrow vertically downward; a second force, T, is shown by an arrow making an angle of fifteen degrees below the positive x axis; and a third force, T, is shown by an arrow making an angle of fifteen degrees below the negative x axis.
Braces are used to apply forces to teeth to realign them. Shown in this figure are the tensions applied by the wire to the protruding tooth. The total force applied to the tooth by the wire, F app size 12{F rSub { size 8{"app"} } } {} , points straight toward the back of the mouth.

[link] shows Superhero and Trusty Sidekick hanging motionless from a rope. Superhero’s mass is 90.0 kg, while Trusty Sidekick’s is 55.0 kg, and the mass of the rope is negligible. (a) Draw a free-body diagram of the situation showing all forces acting on Superhero, Trusty Sidekick, and the rope. (b) Find the tension in the rope above Superhero. (c) Find the tension in the rope between Superhero and Trusty Sidekick. Indicate on your free-body diagram the system of interest used to solve each part.

Two caped superheroes hang on a rope suspended vertically from a bar.
Superhero and Trusty Sidekick hang motionless on a rope as they try to figure out what to do next. Will the tension be the same everywhere in the rope?

A nurse pushes a cart by exerting a force on the handle at a downward angle 35.0º size 12{"35" "." 0°} {} below the horizontal. The loaded cart has a mass of 28.0 kg, and the force of friction is 60.0 N. (a) Draw a free-body diagram for the system of interest. (b) What force must the nurse exert to move at a constant velocity?

Construct Your Own Problem Consider the tension in an elevator cable during the time the elevator starts from rest and accelerates its load upward to some cruising velocity. Taking the elevator and its load to be the system of interest, draw a free-body diagram. Then calculate the tension in the cable. Among the things to consider are the mass of the elevator and its load, the final velocity, and the time taken to reach that velocity.

Construct Your Own Problem Consider two people pushing a toboggan with four children on it up a snow-covered slope. Construct a problem in which you calculate the acceleration of the toboggan and its load. Include a free-body diagram of the appropriate system of interest as the basis for your analysis. Show vector forces and their components and explain the choice of coordinates. Among the things to be considered are the forces exerted by those pushing, the angle of the slope, and the masses of the toboggan and children.

Unreasonable Results (a) Repeat [link] , but assume an acceleration of 1 . 20 m/s 2 size 12{1 "." "20 m/s" rSup { size 8{2} } } {} is produced. (b) What is unreasonable about the result? (c) Which premise is unreasonable, and why is it unreasonable?

Unreasonable Results (a) What is the initial acceleration of a rocket that has a mass of 1 . 50 × 10 6 kg size 12{1 "." "50" times "10" rSup { size 8{6} } " kg"} {} at takeoff, the engines of which produce a thrust of 2 . 00 × 10 6 N size 12{2 "." "00" times "10" rSup { size 8{6} } " N"} {} ? Do not neglect gravity. (b) What is unreasonable about the result? (This result has been unintentionally achieved by several real rockets.) (c) Which premise is unreasonable, or which premises are inconsistent? (You may find it useful to compare this problem to the rocket problem earlier in this section.)

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
what's the program
Jordan
?
Jordan
what chemical
Jordan
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 110 at une. OpenStax CNX. Aug 29, 2013 Download for free at http://legacy.cnx.org/content/col11566/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 110 at une' conversation and receive update notifications?

Ask