<< Chapter < Page Chapter >> Page >
The figure shows a crate on a flat surface, and a magnified view of a bottom corner of the crate and the supporting surface. The magnified view shows that there is roughness in the two surfaces in contact with each other. A black arrow points toward the right, away from the crate, and it is labeled as the direction of motion or attempted motion. A red arrow pointing toward the left is located near the bottom left corner of the crate, at the interface between that corner and the supporting surface. The red arrow is labeled as f, representing friction between the two surfaces in contact with each other.
Frictional forces, such as f size 12{f} {} , always oppose motion or attempted motion between objects in contact. Friction arises in part because of the roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the peaks can skip along the bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also requiring a force to maintain motion. Much of the friction is actually due to attractive forces between molecules making up the two objects, so that even perfectly smooth surfaces are not friction-free. Such adhesive forces also depend on the substances the surfaces are made of, explaining, for example, why rubber-soled shoes slip less than those with leather soles.

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when there is motion (kinetic friction).

When there is no motion between the objects, the magnitude of static friction f s size 12{f rSub { size 8{s} } } {} is

f s μ s N , size 12{f rSub { size 8{s} }<= μ rSub { size 8{s} } N} {}

where μ s size 12{μ rSub { size 8{s} } } {} is the coefficient of static friction and N is the magnitude of the normal force (the force perpendicular to the surface).

Magnitude of static friction

Magnitude of static friction f s size 12{f rSub { size 8{s} } } {} is

f s μ s N , size 12{f rSub { size 8{s} }<= μ rSub { size 8{s} } N} {}

where μ s size 12{μ rSub { size 8{s} } } {} is the coefficient of static friction and N is the magnitude of the normal force.

The symbol size 12{<= {}} {} means less than or equal to , implying that static friction can have a minimum and a maximum value of μ s N size 12{μ rSub { size 8{s} } N} {} . Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit. Once the applied force exceeds f s ( max ) size 12{f rSub { size 8{s \( "max" \) } } } {} , the object will move. Thus

f s ( max ) = μ s N . size 12{f rSub { size 8{s \( "max" \) } } =μ rSub { size 8{s} } N} {}

Once an object is moving, the magnitude of kinetic friction f k size 12{f rSub { size 8{k} } } {} is given by

f k = μ k N , size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {}

where μ k size 12{μ rSub { size 8{K} } } {} is the coefficient of kinetic friction. A system in which f k = μ k N size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {} is described as a system in which friction behaves simply .

Magnitude of kinetic friction

The magnitude of kinetic friction f k size 12{f rSub { size 8{K} } } {} is given by

f k = μ k N , size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {}

where μ k size 12{μ rSub { size 8{K} } } {} is the coefficient of kinetic friction.

As seen in [link] , the coefficients of kinetic friction are less than their static counterparts. That values of μ size 12{μ} {} in [link] are stated to only one or, at most, two digits is an indication of the approximate description of friction given by the above two equations.

Coefficients of static and kinetic friction
System Static friction μ s size 12{μ rSub { size 8{s} } } {} Kinetic friction μ k size 12{μ rSub { size 8{K} } } {}
Rubber on dry concrete 1.0 0.7
Rubber on wet concrete 0.7 0.5
Wood on wood 0.5 0.3
Waxed wood on wet snow 0.14 0.1
Metal on wood 0.5 0.3
Steel on steel (dry) 0.6 0.3
Steel on steel (oiled) 0.05 0.03
Teflon on steel 0.04 0.04
Bone lubricated by synovial fluid 0.016 0.015
Shoes on wood 0.9 0.7
Shoes on ice 0.1 0.05
Ice on ice 0.1 0.03
Steel on ice 0.4 0.02

The equations given earlier include the dependence of friction on materials and the normal force. The direction of friction is always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force would be equal to its weight, W = mg = ( 100 kg ) ( 9 . 80 m/s 2 ) = 980 N size 12{W="mg"= \( "100""kg" \) \( 9 "." "80"`"m/s" rSup { size 8{2} } \) ="980"N} {} , perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater than f s ( max ) = μ s N = 0.45 ( 980 N ) = 440 N size 12{f rSub { size 8{S \( "max" \) } } =μ rSub { size 8{S} } N=0 "." "45" times "980"N="440"N} {} to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only 290 N ( f k = μ k N = 0 . 30 980 N = 290 N size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N= left (0 "." "30" right ) left ("980"" N" right )="290"" N"} {} ) would keep it moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they would be without lubrication. Coefficient of friction is a unit less quantity with a magnitude usually between 0 and 1.0. The coefficient of the friction depends on the two surfaces that are in contact.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
what's the program
Jordan
?
Jordan
what chemical
Jordan
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask