<< Chapter < Page Chapter >> Page >
Power dissipation in resistor circuits.

We can find voltages and currents in simple circuits containing resistors and voltage or current sources.We should examine whether these circuits variables obey the Conservation of Power principle:since a circuit is a closed system, it should not dissipate or create energy.For the moment, our approach is to investigate first a resistor circuit's power consumption/creation. Later, we will prove that because of KVL and KCL all circuits conserve power.

As defined on [link] , the instantaneous power consumed/created by every circuit element equals the product of itsvoltage and current. The total power consumed/created by a circuit equals the sum of eachelement's power. P k k v k i k Recall that each element's current and voltage must obey the convention that positive current is defined to enter the positive-voltage terminal.With this convention, a positive value of v k i k corresponds to consumed power, a negative value to created power. Because the total power in a circuit must be zero( P 0 ), some circuit elements must create power while others consume it.

Consider the simple series circuit should in [link] . In performing our calculations, we defined the current i out to flow through the positive-voltage terminals of both resistors and found it to equal i out v in R 1 R 2 . The voltage across the resistor R 2 is the output voltage and we found it to equal v out R 2 R 1 R 2 v in . Consequently, calculating the power for this resistor yields P 2 R 2 R 1 R 2 2 v in 2 Consequently, this resistor dissipates power because P 2 is positive. This result should not be surprising since we showed that the power consumedby any resistor equals either of the following.

v 2 R   or   i 2 R
Since resistors are positive-valued, resistors always dissipate power . But where does a resistor's power go?By Conservation of Power, the dissipated power must be absorbed somewhere. The answer is not directly predicted by circuit theory, but is by physics.Current flowing through a resistor makes it hot; its power is dissipated by heat.
A physical wire has a resistance and hence dissipates power (it gets warm just like a resistor in a circuit).In fact, the resistance of a wire of length L and cross-sectional area A is given by R ρ L A The quantity ρ is known as the resistivity and presents the resistance of a unit-length, unit cross-sectional area material constituting the wire.Resistivity has units of ohm-meters. Most materials have a positive value for ρ , which means the longer the wire, the greater the resistance and thus thepower dissipated. The thicker the wire, the smaller the resistance.Superconductors have zero resistivity and hence do not dissipate power. If a room-temperature superconductor could be found, electric power could besent through power lines without loss!

Calculate the power consumed/created by the resistor R 1 in our simple circuit example.

The power consumed by the resistor R 1 can be expressed as v in v out i out R 1 R 1 R 2 2 v in 2

Got questions? Get instant answers now!

We conclude that both resistors in our example circuit consume power, which points to the voltage source as the producer of power.The current flowing into the source's positive terminal is i out . Consequently, the power calculation for the source yields v in i out 1 R 1 R 2 v in 2 We conclude that the source provides the power consumed by the resistors, no more, no less.

Confirm that the source produces exactly the total power consumed by both resistors.

1 R 1 R 2 v in 2 R 1 R 1 R 2 2 v in 2 R 2 R 1 R 2 2 v in 2

Got questions? Get instant answers now!

This result is quite general: sources produce power and the circuit elements, especially resistors,consume it. But where do sources get their power?Again, circuit theory does not model how sources are constructed, but the theory decrees that all sources must be provided energy to work.

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask