# 3.3 The regression equation  (Page 2/2)

 Page 2 / 2

$\epsilon$ = the Greek letter epsilon

For each data point, you can calculate the residuals or errors, ${y}_{i}-{\stackrel{^}{y}}_{i}={\epsilon }_{i}$ for $i=\text{1, 2, 3, ..., 11}$ .

Each $|\epsilon |$ is a vertical distance.

For the example about the third exam scores and the final exam scores for the 11 statistics students, there are 11 data points. Therefore, there are 11 $\epsilon$ values. If you square each $\epsilon$ and add, you get

$\left({\epsilon }_{1}{\right)}^{2}+\left({\epsilon }_{2}{\right)}^{2}+\text{...}+\left({\epsilon }_{11}{\right)}^{2}=\stackrel{11}{\underset{\text{i = 1}}{\Sigma }}{\epsilon }^{2}$

This is called the Sum of Squared Errors (SSE) .

Using calculus, you can determine the values of $a$ and $b$ that make the SSE a minimum. When you make the SSE a minimum, you have determined the points that are on the line of best fit. It turns out thatthe line of best fit has the equation:

$\stackrel{^}{y}=a+\text{bx}$

where $a=\overline{y}-b\cdot \overline{x}$ and $b=\frac{\Sigma \left(x-\overline{x}\right)\cdot \left(y-\overline{y}\right)}{{\Sigma \left(x-\overline{x}\right)}^{2}}$ .

$\overline{x}$ and $\overline{y}$ are the sample means of the $x$ values and the $y$ values, respectively. The best fit line always passes through the point $\left(\overline{x},\overline{y}\right)$ .

The slope $b$ can be written as $b=r\cdot \left(\frac{{s}_{y}}{{s}_{x}}\right)$ where ${s}_{y}$ = the standard deviation of the $y$ values and ${s}_{x}$ = the standard deviation of the $x$ values. $r$ is the correlation coefficient which is discussed in the next section.

## Least squares criteria for best fit

The process of fitting the best fit line is called linear regression . The idea behind finding the best fit line is based on the assumption that the data are scattered about a straight line. The criteria for the best fit line is that the sum of the squared errors (SSE) is minimized, that is made as small as possible. Any other line you might choose would have a higher SSE than the best fit line. This best fit line is called the least squares regression line .

Computer spreadsheets, statistical software, and many calculators can quickly calculate the best fit line and create the graphs. The calculations tend to be tedious if done by hand. Instructions to use the TI-83, TI-83+, and TI-84+ calculators to find the best fit line and create a scatterplot are shown at the end of this section.

## Third exam vs final exam example:

The graph of the line of best fit for the third exam/final exam example is shown below:

The least squares regression line (best fit line) for the third exam/final exam example has the equation:

$\stackrel{^}{y}=-173.51+\text{4.83x}\phantom{\rule{20pt}{0ex}}$
• Remember, it is always important to plot a scatter diagram first. If the scatter plot indicates that there is a linear relationship betweenthe variables, then it is reasonable to use a best fit line to make predictions for $y$ given $x$ within the domain of $x$ -values in the sample data, but not necessarily for $x$ -values outside that domain.
• You could use the line to predict the final exam score for a student who earned a grade of 73 on the third exam.
• You should NOT use the line to predict the final exam score for a student who earned a grade of 50 on the third exam, because 50 is not within the domain of the x-values in the sample data, which are between 65 and 75.

## Understanding slope

The slope of the line, b, describes how changes in the variables are related. It is important to interpret the slope of the line in the context of the situation represented by the data. You should be able to write a sentence interpreting the slope in plain English.

INTERPRETATION OF THE SLOPE: The slope of the best fit line tells us how the dependent variable (y) changes for every one unit increase in the independent (x) variable, on average.

## Third exam vs final exam example

• Slope: The slope of the line is b = 4.83.
• Interpretation: For a one point increase in the score on the third exam, the final exam score increases by 4.83 points, on average.

## Using the linear regression t test: linregttest

1. In the STAT list editor, enter the X data in list L1 and the Y data in list L2, paired so that the corresponding (x,y) values are next to each other in the lists. (If a particular pair of values is repeated, enter it as many times as it appears in the data.)
2. On the STAT TESTS menu, scroll down with the cursor to select the LinRegTTest. (Be careful to select LinRegTTest as some calculators may also have a different item called LinRegTInt.)
3. On the LinRegTTest input screen enter: Xlist: L1 ; Ylist: L2 ; Freq: 1
4. On the next line, at the prompt β or ρ, highlight "≠ 0" and press ENTER
5. Leave the line for "RegEq:" blank
6. Highlight Calculate and press ENTER.

The output screen contains a lot of information. For now we will focus on a few items from the output, and will return later to the other items.

• The second line says y=a+bx. Scroll down to find the values a=-173.513, and b=4.8273 ; the equation of the best fit line is $\stackrel{^}{y}=-173.51+\text{4.83}x\phantom{\rule{20pt}{0ex}}$
• The two items at the bottom are $r^{2}$ = .43969 and $r$ =.663. For now, just note where to find these values; we will discuss them in the next two sections.

## Graphing the scatterplot and regression line

1. We are assuming your X data is already entered in list L1 and your Y data is in list L2
2. Press 2nd STATPLOT ENTER to use Plot 1
3. On the input screen for PLOT 1, highlight On and press ENTER
4. For TYPE: highlight the very first icon which is the scatterplot and press ENTER
5. Indicate Xlist: L1 and Ylist: L2
6. For Mark: it does not matter which symbol you highlight.
7. Press the ZOOM key and then the number 9 (for menu item "ZoomStat") ; the calculator will fit the window to the data
8. To graph the best fit line, press the "Y=" key and type the equation -173.5+4.83X into equation Y1. (The X key is immediately left of the STAT key). Press ZOOM 9 again to graph it.
9. Optional: If you want to change the viewing window, press the WINDOW key. Enter your desired window using Xmin, Xmax, Ymin, Ymax

**With contributions from Roberta Bloom

find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!