<< Chapter < Page Chapter >> Page >
N sin θ = mv 2 r . size 12{N"sin"θ= { { ital "mv" rSup { size 8{2} } } over {r} } } {}

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the vertical component of the normal force is N cos θ size 12{N"cos"θ} {} , and the only other vertical force is the car’s weight. These must be equal in magnitude; thus,

N cos θ = mg . size 12{N"cos"θ= ital "mg"} {}

Now we can combine the last two equations to eliminate N size 12{N} {} and get an expression for θ size 12{θ} {} , as desired. Solving the second equation for N = mg / ( cos θ ) size 12{N= ital "mg"/ \( "cos"θ \) } {} , and substituting this into the first yields

mg sin θ cos θ = mv 2 r
mg tan ( θ ) = mv 2 r tan θ = v 2 rg.

Taking the inverse tangent gives

θ = tan 1 v 2 rg (ideally banked curve, no friction). size 12{θ="tan" rSup { size 8{ - 1} } left ( { {v rSup { size 8{2} } } over { ital "rg"} } right )} {}

This expression can be understood by considering how θ size 12{θ} {} depends on v size 12{v} {} and r size 12{r} {} . A large θ size 12{θ} {} will be obtained for a large v size 12{v} {} and a small r size 12{r} {} . That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve at greater or lower speed than if the curve is frictionless. Note that θ size 12{θ} {} does not depend on the mass of the vehicle.

In this figure, a car from the backside is shown, turning to the left, on a slope angling downward to the left. A point in the middle of the back of the car is shown which shows one downward vector depicting weight, w, and an upward arrow depicting force N, which is a linear line along the car and is at an angle theta with the straight up arrow. The slope is at an angle theta with the horizontal surface below the slope. The force values, N multipliy sine theta equals to centripetal force, the net force on the car and N cosine theta equal to w are given below the car.
The car on this banked curve is moving away and turning to the left.

What is the ideal speed to take a steeply banked tight curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

tan θ = v 2 rg size 12{"tan"θ= { {v rSup { size 8{2} } } over { ital "rg"} } } {}

we get

v = ( rg tan θ ) 1 / 2 . size 12{v= \( ital "rg""tan"θ \) rSup { size 8{1/2} } } {}

Noting that tan 65.0º = 2.14, we obtain

v = ( 100 m ) ( 9.80 m /s 2 ) ( 2 . 14 ) 1 / 2 = 45.8 m/s.

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which centripetal force is involved—a number of these are presented in this chapter’s Problems and Exercises.

Take-home experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal acceleration of the end of the club or racquet. You may choose to do this in slow motion.

Phet explorations: gravity and orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Gravity and Orbits

Section summary

  • Centripetal force F c size 12{F rSub { size 8{c} } } {} is any force causing uniform circular motion. It is a “center-seeking” force that always points toward the center of rotation. It is perpendicular to linear velocity v size 12{v} {} and has magnitude
    F c = ma c ,

    which can also be expressed as

    F c = m v 2 r or F c = mr ω 2 ,

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics subject knowledge enhancement course (ske). OpenStax CNX. Jan 09, 2015 Download for free at http://legacy.cnx.org/content/col11505/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics subject knowledge enhancement course (ske)' conversation and receive update notifications?

Ask