<< Chapter < Page Chapter >> Page >
This module summarizes the key concepts of transfer functions and includes examples of using transfer functions.

If the source consists of two (or more) signals, we know from linear system theory that the output voltage equalsthe sum of the outputs produced by each signal alone. In short, linear circuits are a special case of linear systems, andtherefore superposition applies. In particular, suppose these component signals are complex exponentials, each of which has afrequency different from the others. The transfer function portrays how the circuit affects the amplitude and phase of eachcomponent, allowing us to understand how the circuit works on a complicated signal. Those components having a frequency lessthan the cutoff frequency pass through the circuit with little modification while those having higher frequencies aresuppressed. The circuit is said to act as a filter , filtering the source signal based on the frequency of eachcomponent complex exponential. Because low frequencies pass through the filter, we call it a lowpass filter to express more precisely its function.

We have also found the ease of calculating the output forsinusoidal inputs through the use of the transfer function. Once we find the transfer function, we can write the output directlyas indicated by the output of a circuit for a sinusoidal input .

Rl circuit

Let's apply these results to a final example, in which the input is a voltage source and the output is the inductorcurrent. The source voltage equals V in 2 2 60 t 3 . We want the circuit to pass constant (offset) voltageessentially unaltered (save for the fact that the output is a current rather than a voltage) and remove the 60 Hz term.Because the input is the sum of two sinusoids--a constant is a zero-frequency cosine--our approach is

  1. find the transfer function using impedances;
  2. use it to find the output due to each input component;
  3. add the results;
  4. find element values that accomplish our design criteria.
Because the circuit is a series combination of elements, let's use voltage divider to find the transfer function between V in and V , then use the v-i relation of the inductor to find its current.
I out V in 2 f L R 2 f L 1 2 f L 1 2 f L R H f
where voltage divider 2 f L R 2 f L and inductor admittance 1 2 f L [Do the units check?] The formof this transfer function should be familiar; it is a lowpass filter, and it willperform our desired function once we choose element values properly.

The constant term is easiest to handle. The output is given by 3 H 0 3 R . Thus, the value we choose for the resistance will determinethe scaling factor of how voltage is converted into current. For the 60 Hz component signal, the output current is 2 H 60 2 60 t H 60 . The total output due to our source is

i out 2 H 60 2 60 t H 60 3 H 0
The cutoff frequency for this filter occurs when the real andimaginary parts of the transfer function's denominator equal each other. Thus, 2 f c L R , which gives f c R 2 L . We want this cutoff frequency to be much less than 60 Hz.Suppose we place it at, say, 10 Hz. This specification would require the component values to be related by R L 20 62.8 . The transfer function at 60 Hz would be
1 2 60 L R 1 R 1 6 1 1 R 1 37 0.16 1 R
which yields an attenuation (relative to the gain at zero frequency) of about 1 6 , and result in an output amplitude of 0.3 R relative to the constant term's amplitude of 3 R . A factor of 10 relative size between the two components seemsreasonable. Having a 100 mH inductor would require a 6.28 Ω resistor. An easily available resistor value is 6.8Ω; thus, this choice results in cheaply and easily purchased parts. To make the resistance bigger would require aproportionally larger inductor. Unfortunately, even a 1 H inductor is physically large; consequently low cutofffrequencies require small-valued resistors and large-valued inductors. The choice made here represents only onecompromise.

The phase of the 60 Hz component will very nearly be 2 , leaving it to be 0.3 R 2 60 t 2 0.3 R 2 60 t . The waveforms for the input and output are shown in [link] .

Waveforms

Input and output waveforms for the example R L circuit when the element values are R 6.28 and L 100 mH .

Note that the sinusoid's phase has indeed shifted; the lowpass filter not only reduced the 60 Hz signal's amplitude, but alsoshifted its phase by 90°.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask