<< Chapter < Page Chapter >> Page >
Introduction of transfer function(frequency response).

The ratio of the output and input amplitudes for [link] , known as the transfer function or the frequency response , is given by

V out V in H f 1 2 f R C 1
Implicit in using the transfer function is that the input is a complex exponential, and the output is also a complexexponential having the same frequency. The transfer function reveals how the circuit modifies the input amplitude in creatingthe output amplitude. Thus, the transfer function completely describes how the circuit processes the input complex exponential to produce the outputcomplex exponential. The circuit's function is thus summarized by the transfer function. In fact, circuits are often designedto meet transfer function specifications. Because transfer functions are complex-valued, frequency-dependent quantities, wecan better appreciate a circuit's function by examining the magnitude and phase of its transfer function( [link] ).

Simple circuit

A simple R C circuit.

Magnitude and phase of the transfer function

H f 1 2 f R C 2 1
H f 2 f R C
Magnitude and phase of the transfer function of the RC circuit shown in [link] when R C 1 .

This transfer function has many important properties and provides all the insights needed to determine how the circuit functions. First of all, note that we can compute the frequency response for both positive andnegative frequencies. Recall that sinusoids consist of the sum of two complex exponentials, one having the negative frequencyof the other. We will consider how the circuit acts on a sinusoid soon. Do note that the magnitude has even symmetry : The negative frequency portion is a mirror image of the positive frequency portion: H f H f . The phase has odd symmetry : H f H f . These properties of this specific example apply for all transfer functions associated withcircuits. Consequently, we don't need to plot the negative frequency component; we know what it is from the positivefrequency part.

The magnitude equals 1 2 of its maximum gain (1 at f 0 ) when 2 f R C 1 (the two terms in the denominator of the magnitude are equal). The frequency f c 1 2 R C defines the boundary between two operating ranges.

  • For frequencies below this frequency, the circuit does not much alter the amplitude of the complex exponentialsource.
  • For frequencies greater than f c , the circuit strongly attenuates the amplitude. Thus, when the source frequency is in this range, thecircuit's output has a much smaller amplitude than that of the source.
For these reasons, this frequency is known as the cutoff frequency . In this circuit the cutoff frequency depends only on the product of the resistance and the capacitance. Thus, a cutoff frequency of 1 kHz occurs when 1 2 R C 10 3 or R C 10 3 2 1.59 -4 . Thus resistance-capacitance combinations of 1.59 kΩ and 100 nF or 10 Ω and 1.59 μF result in the same cutoff frequency.

The phase shift caused by the circuit at the cutoff frequencyprecisely equals 4 . Thus, below the cutoff frequency, phase is little affected, but athigher frequencies, the phase shift caused by the circuit becomes 2 . This phase shift corresponds to the difference between a cosine and a sine.

We can use the transfer function to find the output when theinput voltage is a sinusoid for two reasons. First of all, a sinusoid is the sum of two complex exponentials, each having afrequency equal to the negative of the other. Secondly, because the circuit is linear, superposition applies. If the source isa sine wave, we know that

v in t A 2 f t A 2 2 f t 2 f t
Since the input is the sum of two complex exponentials, we know that the output is also a sum of two similar complexexponentials, the only difference being that the complex amplitude of each is multiplied by the transfer functionevaluated at each exponential's frequency.
v out t A 2 H f 2 f t A 2 H f 2 f t
As noted earlier, the transfer function is most conveniently expressed in polar form: H f H f H f . Furthermore, H f H f (even symmetry of the magnitude) and H f H f (odd symmetry of the phase). The output voltage expressionsimplifies to
v out t A 2 H f 2 f t H f A 2 H f 2 f t H f A H f 2 f t H f
The circuit's output to a sinusoidal input is also a sinusoid, having a gain equal to the magnitude of thecircuit's transfer function evaluated at the source frequency and a phase equal to the phase of the transfer function at thesource frequency . It will turn out that this input-output relation description applies to any linearcircuit having a sinusoidal source.

This input-output property is a special case of a more general result. Show that if the source can be written asthe imaginary part of a complex exponential— v in t V 2 f t — the output is given by v out t V H f 2 f t . Show that a similar result also holds for the real part.

The key notion is writing the imaginary part as the difference between a complex exponential and its complexconjugate:

V 2 f t V 2 f t V 2 f t 2
The response to V 2 f t is V H f 2 f t , which means the response to V 2 f t is V H f 2 f t . As H f H f , the Superposition Principle says that the output to theimaginary part is V H f 2 f t . The same argument holds for the real part: V 2 f t V H f 2 f t .

Got questions? Get instant answers now!

The notion of impedance arises when we assume the sources arecomplex exponentials. This assumption may seem restrictive; what would we do if the source were a unit step? When we useimpedances to find the transfer function between the source and the output variable, we can derive from it the differentialequation that relates input and output. The differential equation applies no matter what the source may be. As we have argued, it isfar simpler to use impedances to find the differential equation (because we can use series and parallel combination rules) thanany other method. In this sense, we have not lost anything by temporarily pretending the source is a complex exponential.

In fact we can also solve the differential equation usingimpedances! Thus, despite the apparent restrictiveness of impedances, assuming complex exponential sources is actuallyquite general.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask