# 3.1 Solving trigonometric equations with identities  (Page 4/9)

 Page 4 / 9

Show that $\text{\hspace{0.17em}}\frac{\mathrm{cot}\text{\hspace{0.17em}}\theta }{\mathrm{csc}\text{\hspace{0.17em}}\theta }=\mathrm{cos}\text{\hspace{0.17em}}\theta .$

## Creating and verifying an identity

Create an identity for the expression $\text{\hspace{0.17em}}2\mathrm{tan}\text{\hspace{0.17em}}\theta \mathrm{sec}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ by rewriting strictly in terms of sine.

There are a number of ways to begin, but here we will use the quotient and reciprocal identities to rewrite the expression:

Thus,

$2\mathrm{tan}\text{\hspace{0.17em}}\theta \mathrm{sec}\text{\hspace{0.17em}}\theta =\frac{2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta }{1-{\mathrm{sin}}^{2}\text{\hspace{0.17em}}\theta }$

## Verifying an identity using algebra and even/odd identities

Verify the identity:

$\frac{{\mathrm{sin}}^{2}\left(-\theta \right)-{\mathrm{cos}}^{2}\left(-\theta \right)}{\mathrm{sin}\left(-\theta \right)-\mathrm{cos}\left(-\theta \right)}=\mathrm{cos}\text{\hspace{0.17em}}\theta -\mathrm{sin}\text{\hspace{0.17em}}\theta$

Verify the identity $\text{\hspace{0.17em}}\frac{{\mathrm{sin}}^{2}\theta -1}{\mathrm{tan}\text{\hspace{0.17em}}\theta \mathrm{sin}\text{\hspace{0.17em}}\theta -\mathrm{tan}\text{\hspace{0.17em}}\theta }=\frac{\mathrm{sin}\text{\hspace{0.17em}}\theta +1}{\mathrm{tan}\text{\hspace{0.17em}}\theta }.$

$\begin{array}{c}\frac{{\mathrm{sin}}^{2}\theta -1}{\mathrm{tan}\text{\hspace{0.17em}}\theta \mathrm{sin}\text{\hspace{0.17em}}\theta -\mathrm{tan}\text{\hspace{0.17em}}\theta }=\frac{\left(\mathrm{sin}\text{\hspace{0.17em}}\theta +1\right)\left(\mathrm{sin}\text{\hspace{0.17em}}\theta -1\right)}{\mathrm{tan}\text{\hspace{0.17em}}\theta \left(\mathrm{sin}\text{\hspace{0.17em}}\theta -1\right)}\\ =\frac{\mathrm{sin}\text{\hspace{0.17em}}\theta +1}{\mathrm{tan}\text{\hspace{0.17em}}\theta }\end{array}$

## Verifying an identity involving cosines and cotangents

Verify the identity: $\text{\hspace{0.17em}}\left(1-{\mathrm{cos}}^{2}x\right)\left(1+{\mathrm{cot}}^{2}x\right)=1.$

We will work on the left side of the equation.

## Using algebra to simplify trigonometric expressions

We have seen that algebra is very important in verifying trigonometric identities, but it is just as critical in simplifying trigonometric expressions before solving. Being familiar with the basic properties and formulas of algebra, such as the difference of squares formula, the perfect square formula, or substitution, will simplify the work involved with trigonometric expressions and equations.

For example, the equation $\text{\hspace{0.17em}}\left(\mathrm{sin}\text{\hspace{0.17em}}x+1\right)\left(\mathrm{sin}\text{\hspace{0.17em}}x-1\right)=0\text{\hspace{0.17em}}$ resembles the equation $\text{\hspace{0.17em}}\left(x+1\right)\left(x-1\right)=0,$ which uses the factored form of the difference of squares. Using algebra makes finding a solution straightforward and familiar. We can set each factor equal to zero and solve. This is one example of recognizing algebraic patterns in trigonometric expressions or equations.

Another example is the difference of squares formula, $\text{\hspace{0.17em}}{a}^{2}-{b}^{2}=\left(a-b\right)\left(a+b\right),$ which is widely used in many areas other than mathematics, such as engineering, architecture, and physics. We can also create our own identities by continually expanding an expression and making the appropriate substitutions. Using algebraic properties and formulas makes many trigonometric equations easier to understand and solve.

## Writing the trigonometric expression as an algebraic expression

Write the following trigonometric expression as an algebraic expression: $\text{\hspace{0.17em}}2{\mathrm{cos}}^{2}\theta +\mathrm{cos}\text{\hspace{0.17em}}\theta -1.$

Notice that the pattern displayed has the same form as a standard quadratic expression, $\text{\hspace{0.17em}}a{x}^{2}+bx+c.\text{\hspace{0.17em}}$ Letting $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =x,$ we can rewrite the expression as follows:

$2{x}^{2}+x-1$

This expression can be factored as $\text{\hspace{0.17em}}\left(2x-1\right)\left(x+1\right).\text{\hspace{0.17em}}$ If it were set equal to zero and we wanted to solve the equation, we would use the zero factor property and solve each factor for $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ At this point, we would replace $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ with $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ and solve for $\text{\hspace{0.17em}}\theta .$

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!