<< Chapter < Page Chapter >> Page >
  • Understand the definition of force.

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of force. Our intuitive definition of force    —that is, a push or a pull—is a good place to start. We know that a push or pull has both magnitude and direction (therefore, it is a vector quantity) and can vary considerably in each regard. For example, a cannon exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea. Our everyday experiences also give us a good idea of how multiple forces add. If two people push in different directions on a third person, as illustrated in [link] , we might expect the total force to be in the direction shown. Since force is a vector, it adds just like other vectors, as illustrated in [link] (a) for two ice skaters. Forces, like other vectors, are represented by arrows and can be added using the familiar head-to-tail method or by trigonometric methods. These ideas were developed in Two-Dimensional Kinematics .

(a) Overhead view of two ice skaters pushing on a third. One skater pushes with a force F two, represented by an arrow pointing up, and a second skater pushes with a force F one, represented by an arrow pointing from left to right. Vector F one and vector F two are along the arms of the two skaters acting on the third skater. A vector diagram is shown in the form of a right triangle in which the base is vector F one pointing east and perpendicular is shown by vector F two pointing north. The resultant vector is shown by the hypotenuse pointing northeast. (b) Free-body diagram showing only the forces acting on the skater.
Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

[link] (b) is our first example of a free-body diagram    , which is a technique used to illustrate all the external forces acting on a body. The body is represented by a single isolated point (or free body), and only those forces acting on the body from the outside (external forces) are shown. (These forces are the only ones shown, because only external forces acting on the body affect its motion. We can ignore any internal forces within the body.) Free-body diagrams are very useful in analyzing forces acting on a system and are employed extensively in the study and application of Newton’s laws of motion.

A more quantitative definition of force can be based on some standard force, just as distance is measured in units relative to a standard distance. One possibility is to stretch a spring a certain fixed distance, as illustrated in [link] , and use the force it exerts to pull itself back to its relaxed shape—called a restoring force —as a standard. The magnitude of all other forces can be stated as multiples of this standard unit of force. Many other possibilities exist for standard forces. (One that we will encounter in Magnetism is the magnetic force between two wires carrying electric current.) Some alternative definitions of force will be given later in this chapter.

(a) A spring of length x, fixed at one end, is shown in horizontal position. (b) The same spring is shown pulled by a person by a distance of delta x. The restoring force F restore is represented by an arrow pointing left toward the position where the spring is fixed. (c) A spring balance containing a spring stretched a distance delta x is shown. The restoring force is represented by an arrow F restore pointing toward the left in the direction opposite to the elongation of the spring.
The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length x size 12{x} {} when undistorted. (b) When stretched a distance Δ x size 12{Dx} {} , the spring exerts a restoring force, F restore size 12{F rSub { size 8{"restore"} } } {} , which is reproducible. (c) A spring scale is one device that uses a spring to measure force. The force F restore size 12{F rSub { size 8{"restore"} } } {} is exerted on whatever is attached to the hook. Here F restore size 12{F rSub { size 8{"restore"} } } {} has a magnitude of 6 units in the force standard being employed.

Take-home experiment: force standards

To investigate force standards and cause and effect, get two identical rubber bands. Hang one rubber band vertically on a hook. Find a small household item that could be attached to the rubber band using a paper clip, and use this item as a weight to investigate the stretch of the rubber band. Measure the amount of stretch produced in the rubber band with one, two, and four of these (identical) items suspended from the rubber band. What is the relationship between the number of items and the amount of stretch? How large a stretch would you expect for the same number of items suspended from two rubber bands? What happens to the amount of stretch of the rubber band (with the weights attached) if the weights are also pushed to the side with a pencil?

Section summary

  • Dynamics is the study of how forces affect the motion of objects.
  • Force is a push or pull that can be defined in terms of various standards, and it is a vector having both magnitude and direction.
  • External forces are any outside forces that act on a body. A free-body diagram    is a drawing of all external forces acting on a body.

Conceptual questions

Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.

What properties do forces have that allow us to classify them as vectors?

Questions & Answers

how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Abe advanced level physics. OpenStax CNX. Jul 11, 2013 Download for free at http://legacy.cnx.org/content/col11534/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Abe advanced level physics' conversation and receive update notifications?

Ask