# 2.6 One dimensional motion with constant acceleration

 Page 1 / 6
The motion on earth is often modified with constant acceleration due to the combination of gravity and friction forces.

Free falling bodies under gravity represents typical case of motion in one dimension with constant acceleration. A body projected vertically upwards is also a case of constant acceleration in one dimension, but with the difference that body undergoes reversal of direction as well after reaching the maximum height. Yet another set of examples of constant accelerations may include object sliding on an incline plane, motion of an aboject impeded by rough surfaces and many other motions under the influence of gravitational and frictional forces.

The defining differential equations of velocity and acceleration involve only one position variable (say x). In the case of motion under constant acceleration, the differential equation defining acceleration must evaluate to a constant value.

$\begin{array}{l}\mathbf{v}=\frac{đx}{đt}\mathbf{i}\end{array}$

and

$\begin{array}{l}\mathbf{a}=\frac{{đ}^{2}x}{đ{t}^{2}}\mathbf{i}=k\mathbf{i}\end{array}$

where k is a positive or negative constant.

The corresponding scalar form of the defining equations of velocity and acceleration for one dimensional motion with constant acceleration are :

$\begin{array}{l}v=\frac{đx}{đt}\end{array}$

and

$\begin{array}{l}a=\frac{{đ}^{2}x}{đ{t}^{2}}=k\end{array}$

## Constant acceleration

Problem : The position “x” in meter of a particle moving in one dimension is described by the equation :

$\begin{array}{l}t=\sqrt{x}+1\end{array}$

where “t” is in second.

• Find the time when velocity is zero.
• Does the velocity changes its direction?
• Locate position of the particle in the successive seconds for first 3 seconds.
• Find the displacement of the particle in first three seconds.
• Find the distance of the particle in first three seconds.
• Find the displacement of the particle when the velocity becomes zero.
• Determine, whether the particle is under constant or variable force.

Solution : Velocity is equal to the first differential of the position with respect to time, while acceleration is equal to the second differential of the position with respect to time. The given equation, however, expresses time, t, in terms of position, x. Hence, we need to obtain expression of position as a function in time.

$\begin{array}{l}t=\sqrt{x}+1\\ ⇒\sqrt{x}=t-1\end{array}$

Squaring both sides, we have :

$\begin{array}{l}⇒x={t}^{2}-2t+1\end{array}$

This is the desired expression to work upon. Now, taking first differential w.r.t time, we have :

$\begin{array}{l}v=\frac{đx}{đt}=\frac{đ}{đt}\left({t}^{2}-2t+1\right)=2t-2\end{array}$

1: When v = 0, we have v = 2t – 2 = 0

$\begin{array}{l}⇒t=1s\end{array}$

2. Velocity is expressed in terms of time as :

$\begin{array}{l}v=2t-2\end{array}$

It is clear from the expression that velocity is negative for t<1 second, while positive for t>1. As such velocity changes its direction during motion.

3: Positions of the particle at successive seconds for first three seconds are :

$\begin{array}{l}t=0;x={t}^{2}-2t+1=0-0+1=1\phantom{\rule{2pt}{0ex}}m\\ t=1;x={t}^{2}-2t+1=1-2+1=0\phantom{\rule{2pt}{0ex}}m\\ t=2;x={t}^{2}-2t+1=4-4+1=1\phantom{\rule{2pt}{0ex}}m\\ t=3;x={t}^{2}-2t+1=9-6+1=4\phantom{\rule{2pt}{0ex}}m\end{array}$

4: Positions of the particle at t = 0 and t = 3 s are 1 m and 4 m from the origin.

Hence, displacement in first three seconds is 4 – 1 = 3 m

5: The particle moves from the start position, x = 1 m, in the negative direction for 1 second. At t = 1, the particle comes to rest. For the time interval from 1 to 3 seconds, the particle moves in the positive direction.

A stone propelled from a catapult with a speed of 50ms-1 attains a height of 100m. Calculate the time of flight, calculate the angle of projection, calculate the range attained
water boil at 100 and why
what is upper limit of speed
what temperature is 0 k
Riya
0k is the lower limit of the themordynamic scale which is equalt to -273 In celcius scale
Mustapha
How MKS system is the subset of SI system?
which colour has the shortest wavelength in the white light spectrum
if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
x=5.8-3.22 x=2.58
what is the definition of resolution of forces
what is energy?
Ability of doing work is called energy energy neither be create nor destryoed but change in one form to an other form
Abdul
motion
Mustapha
highlights of atomic physics
Benjamin
can anyone tell who founded equations of motion !?
n=a+b/T² find the linear express
أوك
عباس
Quiklyyy
Moment of inertia of a bar in terms of perpendicular axis theorem
How should i know when to add/subtract the velocities and when to use the Pythagoras theorem?
Centre of mass of two uniform rods of same length but made of different materials and kept at L-shape meeting point is origin of coordinate