<< Chapter < Page Chapter >> Page >

Statistics students believe that the mean score on the first statistics test is 65. A statistics instructor thinks the mean score is higher than 65.He samples ten statistics students and obtains the scores

  • 65
  • 65
  • 70
  • 67
  • 66
  • 63
  • 63
  • 68
  • 72
  • 71
. He performs a hypothesis test using a 5% level of significance. The data are from a normal distribution.

Set up the Hypothesis Test:

A 5% level of significance means that α = 0.05 . This is a test of a single population mean .

H o : μ = 65 H a : μ > 65

Since the instructor thinks the average score is higher, use a " > ". The " > " means the test is right-tailed.

Determine the distribution needed:

Random variable: X = average score on the first statistics test.

Distribution for the test: If you read the problem carefully, you will notice that there is no population standard deviation given . You are only given n = 10 sample data values. Notice also that the data come from a normal distribution. This means that thedistribution for the test is a student's-t.

Use t df . Therefore, the distribution for the test is t 9 where n = 10 and df = 10 - 1 = 9 .

Calculate the p-value using the Student's-t distribution:

p-value = P ( x > 67 ) = 0.0396 where the sample mean and sample standard deviation are calculated as 67 and 3.1972 from the data.

Interpretation of the p-value: If the null hypothesis is true, then there is a 0.0396 probability (3.96%) that the sample mean is 67 or more.

Normal distribution curve of average scores on the first statistic tests with 65 and 67 values on the x-axis. A vertical upward line extends from 67 to the curve. The p-value points to the area to the right of 67.

Compare α and the p-value:

Since α = .05 and p-value = 0.0396 . Therefore, α > p-value .

Make a decision: Since α > p-value , reject H o .

This means you reject μ = 65 . In other words, you believe the average test score is more than 65.

Conclusion: At a 5% level of significance, the sample data show sufficient evidence that the mean (average) test score is more than 65, just as the math instructor thinks.

The p-value can easily be calculated using the TI-83+ and the TI-84 calculators:

Put the data into a list. Press STAT and arrow over to TESTS . Press 2:T-Test . Arrow over to Data and press ENTER . Arrow down and enter 65 for μ 0 , the name of the list where you put the data, and 1 for Freq: . Arrow down to μ : and arrow over to > μ 0 . Press ENTER . Arrow down to Calculate and press ENTER . The calculator not only calculates the p-value ( p = 0.0396 ) but it also calculates the test statistic (t-score) for the sample mean, the sample mean, and the sample standarddeviation. μ > 65 is the alternate hypothesis. Do this set of instructions again except arrow to Draw (instead of Calculate ). Press ENTER . A shaded graph appears with t = 1.9781 (test statistic) and p = 0.0396 (p-value). Make sure when you use Draw that no other equations are highlighted in Y = and the plots are turned off.

Joon believes that 50% of first-time brides in the United States are younger than their grooms. She performs a hypothesis test to determine if the percentageis the same or different from 50% . Joon samples 100 first-time brides and 53 reply that they are younger than their grooms. For the hypothesis test, she uses a 1% level ofsignificance.

Set up the Hypothesis Test:

The 1% level of significance means that α = 0.01 . This is a test of a single population proportion .

H o : p = 0.50 H a : p 0.50

The words "is the same or different from" tell you this is a two-tailed test.

Calculate the distribution needed:

Random variable: P ' = the percent of of first-time brides who are younger than their grooms.

Distribution for the test: The problem contains no mention of a mean. The information is given in terms of percentages. Use the distribution for P ' , the estimated proportion.

P ' ~ N ( p , p q n ) Therefore, P ' ~ N ( 0.5 , 0.5 0.5 100 ) where p = 0.50 , q = 1 - p = 0.50 , and n = 100 .

Calculate the p-value using the normal distribution for proportions:

p-value = P ( p' 0.47 or p' > 0.53 ) = 0.5485

where x = 53 , p ' = x n = 53 100 = 0.53 .

Interpretation of the p-value: If the null hypothesis is true, there is 0.5485 probability (54.85%) that the sample (estimated) proportion p ' is 0.53 or more OR 0.47 or less (see the graph below).

Normal distribution curve of the percent of first time brides who are younger than the groom with values of 0.47, 0.50, and 0.53 on the x-axis. Vertical upward lines extend from 0.47 and 0.53 to the curve. 1/2(p-values) are calculated for the areas on outsides of 0.47 and 0.53.

μ = p = 0.50 comes from H o , the null hypothesis.

p ' = 0.53 . Since the curve is symmetrical andthe test is two-tailed, the p ' for the left tail is equal to 0.50 - 0.03 = 0.47 where μ = p = 0.50 . (0.03 is the differencebetween 0.53 and 0.50.)

Compare α and the p-value:

Since α = 0.01 and p-value = 0.5485 . Therefore, α p-value .

Make a decision: Since α p-value , you cannot reject H o .

Conclusion: At the 1% level of significance, the sample data do not show sufficient evidence that the percentage of first-time brides that are younger than their grooms isdifferent from 50%.

The p-value can easily be calculated using the TI-83+ and the TI-84 calculators:

Press STAT and arrow over to TESTS . Press 5:1-PropZTest . Enter .5 for p 0 , 53 for x and 100 for n . Arrow down to Prop and arrow to not equals p 0 . Press ENTER . Arrow down to Calculate and press ENTER . The calculator calculates the p-value ( p = 0.5485 ) and the test statistic (z-score). Prop not equals .5 is the alternate hypothesis. Do this set of instructions again except arrow to Draw (instead of Calculate ). Press ENTER . A shaded graph appears with z = 0.6 (test statistic) and p = 0.5485 (p-value). Make sure when you use Draw that no other equations are highlighted in Y = and the plots are turned off.

The Type I and Type II errors are as follows:

The Type I error is to conclude that the proportion of first-time brides that are younger than their grooms is different from 50% when, in fact, the proportion is actually 50%.(Reject the null hypothesis when the null hypothesis is true).

The Type II error is there is not enough evidence to conclude that the proportion of first time brides that are younger than their grooms differs from 50% when, in fact, the proportion does differ from 50%. (Do not reject the null hypothesis when the null hypothesis is false.)

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Pdf generation problem modules. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10514/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Pdf generation problem modules' conversation and receive update notifications?

Ask