# 2.4 Hypothesis testing of single mean and single proportion: examples  (Page 3/6)

 Page 3 / 6

Statistics students believe that the mean score on the first statistics test is 65. A statistics instructor thinks the mean score is higher than 65.He samples ten statistics students and obtains the scores

• 65
• 65
• 70
• 67
• 66
• 63
• 63
• 68
• 72
• 71
. He performs a hypothesis test using a 5% level of significance. The data are from a normal distribution.

Set up the Hypothesis Test:

A 5% level of significance means that $\alpha =0.05$ . This is a test of a single population mean .

${H}_{o}$ : $\mu$ $=65\phantom{\rule{20pt}{0ex}}$ ${H}_{a}$ : $\mu$ $>65$

Since the instructor thinks the average score is higher, use a " $>$ ". The " $>$ " means the test is right-tailed.

Determine the distribution needed:

Random variable: $\overline{X}$ = average score on the first statistics test.

Distribution for the test: If you read the problem carefully, you will notice that there is no population standard deviation given . You are only given $n=10$ sample data values. Notice also that the data come from a normal distribution. This means that thedistribution for the test is a student's-t.

Use ${t}_{\text{df}}$ . Therefore, the distribution for the test is ${t}_{9}$ where $n=10$ and $\text{df}=10-1=9$ .

Calculate the p-value using the Student's-t distribution:

$\text{p-value}=P\left($ $\overline{x}$ $>67$ ) $=0.0396$ where the sample mean and sample standard deviation are calculated as 67 and 3.1972 from the data.

Interpretation of the p-value: If the null hypothesis is true, then there is a 0.0396 probability (3.96%) that the sample mean is 67 or more.

Compare $\alpha$ and the p-value:

Since $\alpha =.05$ and $\text{p-value}=0.0396$ . Therefore, $\alpha >\text{p-value}$ .

Make a decision: Since $\alpha >\text{p-value}$ , reject ${H}_{o}$ .

This means you reject $\mu =65$ . In other words, you believe the average test score is more than 65.

Conclusion: At a 5% level of significance, the sample data show sufficient evidence that the mean (average) test score is more than 65, just as the math instructor thinks.

The p-value can easily be calculated using the TI-83+ and the TI-84 calculators:

Put the data into a list. Press STAT and arrow over to TESTS . Press 2:T-Test . Arrow over to Data and press ENTER . Arrow down and enter 65 for ${\mu }_{0}$ , the name of the list where you put the data, and 1 for Freq: . Arrow down to $\mu :$ and arrow over to $>{\mu }_{0}$ . Press ENTER . Arrow down to Calculate and press ENTER . The calculator not only calculates the p-value ( $p=0.0396$ ) but it also calculates the test statistic (t-score) for the sample mean, the sample mean, and the sample standarddeviation. $\mu >65$ is the alternate hypothesis. Do this set of instructions again except arrow to Draw (instead of Calculate ). Press ENTER . A shaded graph appears with $t=1.9781$ (test statistic) and $p=0.0396$ (p-value). Make sure when you use Draw that no other equations are highlighted in $Y=$ and the plots are turned off.

Joon believes that 50% of first-time brides in the United States are younger than their grooms. She performs a hypothesis test to determine if the percentageis the same or different from 50% . Joon samples 100 first-time brides and 53 reply that they are younger than their grooms. For the hypothesis test, she uses a 1% level ofsignificance.

Set up the Hypothesis Test:

The 1% level of significance means that $\alpha =0.01$ . This is a test of a single population proportion .

${H}_{o}$ : $p$ $=0.50\phantom{\rule{20pt}{0ex}}$ ${H}_{a}$ : $p$ $\ne 0.50$

The words "is the same or different from" tell you this is a two-tailed test.

Calculate the distribution needed:

Random variable: $P\text{'}$ = the percent of of first-time brides who are younger than their grooms.

Distribution for the test: The problem contains no mention of a mean. The information is given in terms of percentages. Use the distribution for $P\text{'}$ , the estimated proportion.

$P\text{'}$ ~ $N$ $\left(p,\sqrt{\frac{p\cdot q}{n}}\right)\phantom{\rule{20pt}{0ex}}$ Therefore, $P\text{'}$ ~ $N$ $\left(0.5,\sqrt{\frac{0.5\cdot 0.5}{100}}\right)$ where $p=0.50$ , $q=1-p=0.50$ , and $n=100$ .

Calculate the p-value using the normal distribution for proportions:

$\text{p-value}=P\left(\mathrm{p\text{'}}$ $()$ $0.47$ or $\mathrm{p\text{'}}>0.53$ ) $=0.5485$

where $x=53$ , $p\text{'}=\frac{x}{n}$ $=\frac{53}{100}=0.53$ .

Interpretation of the p-value: If the null hypothesis is true, there is 0.5485 probability (54.85%) that the sample (estimated) proportion $p\text{'}$ is 0.53 or more OR 0.47 or less (see the graph below).

$\mu =p=0.50$ comes from ${H}_{o}$ , the null hypothesis.

$p\text{'}$ $=0.53$ . Since the curve is symmetrical andthe test is two-tailed, the $p\text{'}$ for the left tail is equal to $0.50-0.03=0.47$ where $\mu =p=0.50$ . (0.03 is the differencebetween 0.53 and 0.50.)

Compare $\alpha$ and the p-value:

Since $\alpha =0.01$ and $\text{p-value}=0.5485$ . Therefore, $\alpha$ $()$ $\text{p-value}$ .

Make a decision: Since $\alpha$ $()$ $\text{p-value}$ , you cannot reject ${H}_{o}$ .

Conclusion: At the 1% level of significance, the sample data do not show sufficient evidence that the percentage of first-time brides that are younger than their grooms isdifferent from 50%.

The p-value can easily be calculated using the TI-83+ and the TI-84 calculators:

Press STAT and arrow over to TESTS . Press 5:1-PropZTest . Enter .5 for ${p}_{0}$ , 53 for $x$ and 100 for $n$ . Arrow down to Prop and arrow to not equals ${p}_{0}$ . Press ENTER . Arrow down to Calculate and press ENTER . The calculator calculates the p-value ( $p=0.5485$ ) and the test statistic (z-score). Prop not equals .5 is the alternate hypothesis. Do this set of instructions again except arrow to Draw (instead of Calculate ). Press ENTER . A shaded graph appears with $z=0.6$ (test statistic) and $p=0.5485$ (p-value). Make sure when you use Draw that no other equations are highlighted in $Y=$ and the plots are turned off.

The Type I and Type II errors are as follows:

The Type I error is to conclude that the proportion of first-time brides that are younger than their grooms is different from 50% when, in fact, the proportion is actually 50%.(Reject the null hypothesis when the null hypothesis is true).

The Type II error is there is not enough evidence to conclude that the proportion of first time brides that are younger than their grooms differs from 50% when, in fact, the proportion does differ from 50%. (Do not reject the null hypothesis when the null hypothesis is false.)

find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!