# 2.3 The most general applications of bernoulli’s equation

 Page 1 / 2
• Calculate using Torricelli’s theorem.
• Calculate power in fluid flow.

## Torricelli’s theorem

[link] shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if resistance is negligible, the speed is just what it would be if the water fell a distance $h$ from the surface of the reservoir; the water’s speed is independent of the size of the opening. Let us check this out. Bernoulli’s equation must be used since the depth is not constant. We consider water flowing from the surface (point 1) to the tube’s outlet (point 2). Bernoulli’s equation as stated in previously is

${P}_{1}+\frac{1}{2}{\mathrm{\rho v}}_{1}^{2}+\rho {\text{gh}}_{1}={P}_{2}+\frac{1}{2}{\mathrm{\rho v}}_{2}^{2}+\rho {\text{gh}}_{2}\text{.}$

Both ${P}_{1}$ and ${P}_{2}$ equal atmospheric pressure ( ${P}_{1}$ is atmospheric pressure because it is the pressure at the top of the reservoir. ${P}_{2}$ must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot have a pressure different from atmospheric pressure.) and subtract out of the equation, leaving

$\frac{1}{2}{\mathrm{\rho v}}_{1}^{2}+\rho {\text{gh}}_{1}=\frac{1}{2}{\mathrm{\rho v}}_{2}^{2}+\rho {\text{gh}}_{2}\text{.}$

Solving this equation for ${v}_{2}^{2}$ , noting that the density $\rho$ cancels (because the fluid is incompressible), yields

${v}_{2}^{2}={v}_{1}^{2}+2g\left({h}_{1}-{h}_{2}\right)\text{.}$

We let $h={h}_{1}-{h}_{2}$ ; the equation then becomes

${v}_{2}^{2}={v}_{1}^{2}+2\text{gh}$

where $h$ is the height dropped by the water. This is simply a kinematic equation for any object falling a distance $h$ with negligible resistance. In fluids, this last equation is called Torricelli’s theorem . Note that the result is independent of the velocity’s direction, just as we found when applying conservation of energy to falling objects.

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant pressure. The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all change. (See [link] .)

## Calculating pressure: a fire hose nozzle

Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of 40.0 L/s starting at a gauge pressure of $1\text{.}\text{62}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}$ . The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of 3.00 cm. Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

${P}_{1}+\frac{1}{2}{\mathrm{\rho v}}_{1}^{2}+\rho {\text{gh}}_{1}={P}_{2}+\frac{1}{2}{\mathrm{\rho v}}_{2}^{2}+\rho {\text{gh}}_{2}\text{,}$

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle, respectively. We must first find the speeds ${v}_{1}$ and ${v}_{2}$ . Since $Q={A}_{1}{v}_{1}$ , we get

${v}_{1}=\frac{Q}{{A}_{1}}=\frac{\text{40}\text{.}0×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\text{/s}}{\pi \left(3\text{.}\text{20}×{\text{10}}^{-2}\phantom{\rule{0.25em}{0ex}}\text{m}{\right)}^{2}}=\text{12}\text{.}4\phantom{\rule{0.25em}{0ex}}\text{m/s}\text{.}$

Similarly, we find

${v}_{2}=\text{56.6 m/s}\text{.}$

(This rather large speed is helpful in reaching the fire.) Now, taking ${h}_{1}$ to be zero, we solve Bernoulli’s equation for ${P}_{2}$ :

${P}_{2}={P}_{1}+\frac{1}{2}\rho \left({v}_{1}^{2}-{v}_{2}^{2}\right)-\rho {\text{gh}}_{2}\text{.}$

Substituting known values yields

${P}_{2}=1\text{.}\text{62}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}+\frac{1}{2}\left(\text{1000}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left[\left(\text{12}\text{.}4\phantom{\rule{0.25em}{0ex}}\text{m/s}{\right)}^{2}-\left(\text{56}\text{.}6\phantom{\rule{0.25em}{0ex}}\text{m/s}{\right)}^{2}\right]-\left(\text{1000}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left(9\text{.}80\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}\right)\left(\text{10}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m}\right)=0\text{.}$

Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure equals atmospheric pressure, as it must because the water exits into the atmosphere without changes in its conditions.

how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!