# 2.3 Machine learning lecture 4 course notes  (Page 2/5)

 Page 2 / 5

## Preliminaries

In this set of notes, we begin our foray into learning theory. Apart from being interesting and enlightening in its own right, this discussion will also help ushone our intuitions and derive rules of thumb about how to best apply learning algorithms in different settings. We will also seek to answer a few questions: First, can wemake formal the bias/variance tradeoff that was just discussed? The will also eventually lead us to talk about model selection methods, which can,for instance, automatically decide what order polynomial to fit to a training set. Second, in machine learning it's really generalization errorthat we care about, but most learning algorithms fit their models to the training set. Why should doing well on the training set tell us anythingabout generalization error? Specifically, can we relate error on the training set to generalization error? Third and finally, are there conditions underwhich we can actually prove that learning algorithms will work well?

Lemma. (The union bound). Let ${A}_{1},{A}_{2},...,{A}_{k}$ be $k$ different events (that may not be independent). Then

$P\left({A}_{1}\cup \cdots \cup {A}_{k}\right)\le P\left({A}_{1}\right)+...+P\left({A}_{k}\right).$

In probability theory, the union bound is usually stated as an axiom (and thus we won't try to prove it), but it also makes intuitive sense: The probability ofany one of $k$ events happening is at most the sums of the probabilities of the $k$ different events.

Lemma. (Hoeffding inequality) Let ${Z}_{1},...,{Z}_{m}$ be $m$ independent and identically distributed (iid) random variables drawn from a Bernoulli( $\Phi$ ) distribution. I.e., $P\left({Z}_{i}=1\right)=\Phi$ , and $P\left({Z}_{i}=0\right)=1-\Phi$ . Let $\stackrel{‸}{\Phi }=\left(1/m\right){\sum }_{i=1}^{m}{Z}_{i}$ be the mean of these random variables, and let any $\gamma >0$ be fixed. Then

$P\left(|\Phi -\stackrel{^}{\Phi }|>\gamma \right)\le 2exp\left(-2{\gamma }^{2}m\right)$

This lemma (which in learning theory is also called the Chernoff bound ) says that if we take $\stackrel{^}{\Phi }$ —the average of $m$ Bernoulli( $\Phi$ ) random variables—to be our estimate of $\Phi$ , then the probability of our being far from the true value is small, so long as $m$ is large. Another way of saying this is that if you have a biased coin whosechance of landing on heads is $\Phi$ , then if you toss it $m$ times and calculate the fraction of times that it came up heads, that will be agood estimate of $\Phi$ with high probability (if $m$ is large).

Using just these two lemmas, we will be able to prove some of the deepest and most important results in learning theory.

To simplify our exposition, let's restrict our attention to binary classification in which the labels are $y\in \left\{0,1\right\}$ . Everything we'll say here generalizes to other, including regression and multi-classclassification, problems.

We assume we are given a training set $S=\left\{\left({x}^{\left(i\right)},{y}^{\left(i\right)}\right);i=1,...,m\right\}$ of size $m$ , where the training examples $\left({x}^{\left(i\right)},{y}^{\left(i\right)}\right)$ are drawn iid from some probability distribution $\mathcal{D}$ . For a hypothesis $h$ , we define the training error (also called the empirical risk or empirical error in learning theory) to be

$\stackrel{^}{\epsilon }\left(h\right)=\frac{1}{m}\sum _{i=1}^{m}1\left\{h\left({x}^{\left(i\right)}\right)\ne {y}^{\left(i\right)}\right\}.$

This is just the fraction of training examples that $h$ misclassifies. When we want to make explicit the dependence of $\stackrel{^}{\epsilon }\left(h\right)$ on the training set $S$ , we may also write this a ${\stackrel{^}{\epsilon }}_{S}\left(h\right)$ . We also define the generalization error to be

find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!