# 2.1 Intermolecular and intramolecular forces and the kinetic theory  (Page 2/2)

 Page 2 / 2

## The kinetic theory of matter

The kinetic theory of matter helps us to explain why matter exists in different phases (i.e. solid, liquid and gas), and how matter can change from one phase to the next. The kinetic theory of matter also helpsus to understand other properties of matter. It is important to realise that what we will go on to describe is only a theory . It cannot be proved beyond doubt, but the fact that it helps us to explain our observations of changes in phase, and otherproperties of matter, suggests that it probably is more than just a theory.

Broadly, the Kinetic Theory of Matter says that:

• Matter is made up of particles that are constantly moving.
• All particles have energy , but the energy varies depending on whether the substance is a solid, liquid or gas. Solid particles have the least amount ofenergy and gas particles have the greatest amount of energy.
• The temperature of a substance is a measure of the average kinetic energy of the particles.
• A change in phase may occur when the energy of the particles is changed.
• There are spaces between the particles of matter.
• There are attractive forces between particles and these become stronger as the particles move closer together. These attractive forces will either be intramolecularforces (if the particles are atoms) or intermolecular forces (if the particles are molecules). When the particles are extremely close, repulsive forces startto act.

[link] summarises the characteristics of the particles that are in each phase of matter.

 Property of matter Solid Liquid Gas Particles Atoms or molecules Atoms or molecules Atoms or molecules Energy and movement of particles Low energy - particles vibrate around a fixed point Particles have less energy than in the gas phase Particles have high energy and are constantly moving Spaces between particles Very little space between particles. Particles are tightly packed together Smaller spaces than in gases, but larger spaces than in solids Large spaces because of high energy Attractive forces between particles Very strong forces. Solids have a fixed volume. Stronger forces than in gas. Liquids can be poured. Weak forces because of the large distance between particles Changes in phase Solids become liquids if their temperature is increased. In some cases a solid may become a gas if the temperature is increased. A liquid becomes a gas if its temperature is increased. It becomes a solid if its temperature decreases. In general a gas becomes a liquid when it is cooled. (In a few cases a gas becomes a solid when cooled). Particles have less energy andtherefore move closer together so that the attractive forces become stronger, and the gas becomes a liquid (or a solid.)

The following presentation is a brief summary of the above. Try to fill in the blank spaces before clicking onto the next slide.

Let's look at an example that involves the three phases of water: ice (solid), water (liquid) and water vapour(gas). Note that in the [link] below the molecules in the solid phase are represented by single spheres, but they wouldin reality look like the molecules in the liquid and gas phase. Sometimes we represent molecules as single spheres in the solid phase to emphasise the smallamount of space between them and to make the drawing simpler.

Taking water as an example we find that in the solid phase the water molecules have very little energy and can't move away from eachother. The molecules are held closely together in a regular pattern called a lattice . If the ice is heated, the energy of the molecules increases. This means that some of the water molecules are ableto overcome the intermolecular forces that are holding them together, and the molecules move further apart to form liquid water . This is why liquid water is able to flow, because the molecules are more free to move than they were in the solid lattice. If themolecules are heated further, the liquid water will become water vapour, which is a gas. Gas particles have lots of energy and are far away from each other.That is why it is difficult to keep a gas in a specific area! The attractive forces between the particles are very weak and they are only loosely heldtogether. [link] shows the changes in phase that may occur in matter, and the names that describe these processes.

can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!