<< Chapter < Page Chapter >> Page >


The Scale- Invariant Feature Transform is an algorithm in computer vision to detect and describe points of interest in an image.


According to Prof. Dowe’s paper on Distinctive Image Features from Scale-Invariant Keypoints(2004), there are four stages to SIFT:

  1. “Scale-space extrema detection”- Searches the entire image for candidate interest points
  2. “Keypoint localization”- Calculate the location and scale for each candidate, remove candidates that are not stable
  3. “Orientation assignment”- Assign each key point with one or more orientations that are calculated based on the gradient direction at that key point location in the image
  4. “Keypoint descriptor”- For each key point, calculate the gradient in its surrounding area. This allows the transform to be distortion resistant. The above approach “transforms image data into scale-invariant coordinates relative to local features”.

Our project seeks to achieve scale, rotation and translation resistance. However due to time-constraint, we did not implement stage 4 “Keypoint descriptor” of SIFT.


Stage 1

Apply Gaussian filters of different scales to the image. By using different scales the Gaussian filters would have different variances. Due to the inherent properties of Gaussian filters, this would “smooth” out the images, removing finer details of the image. At different scales, the details of the image that are insignificant compared to the standard deviation of the Gaussian filter applied would be removed. The Gaussians are generated using the following formula:

Gaussian Generation.

Then the image, represented as an array of digits, is convolved with the Gaussian.


L(x,y,sigma) is the value of the resulting image at location (x,y) under the Gaussian filter with standard deviation sigma. I stands for the original image.

We applied Gaussians with scale 0, 1, and 2 to the image. At scale 0, we are essentially preserving the original image, at scales 1 and 2 we are “smoothing out” the image to an increasing extend. We have 3 octaves of resulting images, each octave consists of images resulting from repeated applying the gaussian filter of the same scale to the original image. After each octave, the image is down-sampled by two.


A dog sitting on a couch.

Stage 2

Now we have the image smoothed to different extends, with variant amount of fine detailed preserved in the resulting images. Within each octave, we use Difference of Gaussian, which is basically subtracting neighboring images from each other. Difference of Gaussian is proven to be a close approximation of scale-normalized Laplacian of Gaussian, which is shown to "produce the most stable image features compared to a range of other possible image functions, such as the gradient, Hessian, or Harris corner function”. Moreover, Difference of Gaussian is efficient to compute since it’s just subtracting images.


A dog sitting on a couch.

Then for each pixel in a resulting image, we compare it to its eight neighboring pixels in the same image and nine neighboring pixels in the images processed by adjacent scales. It’s selected if it’s greater or smaller than all its neighbors. The result is a candidate key point.


A dog sitting on a couch.

Stage 3

To calculate the magnitude and orientation of each key point, we look at all it’s neighboring pixels in the image that is processed with the same scale.

A dog sitting on a couch.

m(x,y) stands for the gradient magnitude of the point and theta(x,y) stands for the orientation of the point.


A dog sitting on a couch.

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Elec 301 projects fall 2014. OpenStax CNX. Jan 09, 2015 Download for free at http://legacy.cnx.org/content/col11734/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elec 301 projects fall 2014' conversation and receive update notifications?