<< Chapter < Page
  Adaptive filters   Page 1 / 1
Chapter >> Page >

Analysis of the lms algorithm

It is important to analyze the LMS algorithm to determine under what conditions it is stable, whether or not it convergesto the Wiener solution, to determine how quickly it converges, how much degredation is suffered due to the noisy gradient,etc. In particular, we need to know how to choose the parameter .

Mean of w

does W k , k approach the Wiener solution? (since W k is always somewhat random in the approximate gradient-based LMS algorithm, we ask whether the expectedvalue of the filter coefficients converge to the Wiener solution)

W k + 1 W k + 1 W k 2 k X k W k 2 d k X k 2 W k X k X k W k 2 P 2 W k X k X k

Patently false assumption

X k and X k - i , X k and d k - i , and d k and d k - i are statistically independent, i 0 . This assumption is obviously false, since X k - 1 is the same as X k except for shifting down the vector elements one place and adding one new sample. We make this assumptionbecause otherwise it becomes extremely difficult to analyze the LMS algorithm. (First good analysis not makingthis assumption: Macchi and Eweda ) Many simulations and much practical experience has shown that the results one obtains withanalyses based on the patently false assumption above are quite accurate in most situations

With the independence assumption, W k (which depends only on previous X k - i , d k - i ) is statitically independent of X k , and we can simplify W k X k X k

Now W k X k X k is a vector, and

W k X k X k i M 1 0 w i k x k - i x k - j i M 1 0 w i k x k - i x k - j i M 1 0 w i k x k - i x k - j i M 1 0 w i k r xx i j R W k
where R X k X k is the data correlation matrix.

Putting this back into our equation

W k + 1 W k 2 P 2 R W k I 2 R W k 2 P
Now if W k converges to a vector of finite magnitude ("convergence in the mean"), what does it converge to?

If W k converges, then as k , W k + 1 W k , and W I 2 R W 2 P 2 R W 2 P R W P or W opt R P the Wiener solution!

So the LMS algorithm, if it converges, gives filter coefficients which on average arethe Wiener coefficients! This is, of course, a desirable result.

First-order stability

But does W k converge, or under what conditions?

Let's rewrite the analysis in term of V k , the "mean coefficient error vector" V k W k W opt , where W opt is the Wiener filter W k + 1 W k 2 R W k 2 P W k + 1 W opt W k W opt 2 R W k 2 R W opt 2 R W opt 2 P V k + 1 V k 2 R V k 2 R W opt 2 P Now W opt R P , so V k + 1 V k 2 R V k 2 R R P 2 P I 2 R V k We wish to know under what conditions V k 0 ?

Linear algebra fact

Since R is positive definite, real, and symmetric, all the eigenvalues arereal and positive. Also, we can write R as Q Q , where is a diagonal matrix with diagonal entries i equal to the eigenvalues of R , and Q is a unitary matrix with rows equal to the eigenvectors corresponding to theeigenvalues of R .

Using this fact, V k + 1 I 2 Q Q V k multiplying both sides through on the left by Q : we get Q V k + 1 Q 2 Q V k 1 2 Q V k Let V ' Q V : V ' k + 1 1 2 V ' k Note that V ' is simply V in a rotated coordinate set in m , so convergence of V ' implies convergence of V .

Since 1 2 is diagonal, all elements of V ' evolve independently of each other. Convergence (stability) bolis down to whether all M of these scalar, first-order difference equations are stable, and thus 0 . i i

    1 2 M
V i ' k + 1 1 2 i V i ' k These equations converge to zero if 1 2 i 1 , or i i 1 and i are positive, so we require i 1 i so for convergence in the mean of the LMS adaptive filter, we require
1 max
This is an elegant theoretical result, but in practice, we may not know max , it may be time-varying, and we certainly won't want to compute it. However, another useful mathematicalfact comes to the rescue... tr R i 1 M r ii i 1 M i max Since the eigenvalues are all positive and real.

For a correlation matrix, i i 1 M r ii r 0 . So tr R M r 0 M x k x k . We can easily estimate r 0 with O 1 computations/sample, so in practice we might require 1 M r 0 as a conservative bound, and perhaps adapt accordingly with time.

Rate of convergence

Each of the modes decays as 1 2 i k

The initial rate of convergence is dominated by the fastest mode 1 2 max . This is not surprising, since a dradient descent method goes "downhill" in the steepest direction
The final rate of convergence is dominated by the slowest mode 1 2 min . For small min , it can take a long time for LMS to converge.
Note that the convergence behavior depends on the data (via R ). LMS converges relatively quickly for roughly equal eigenvalues. Unequaleigenvalues slow LMS down a lot.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Adaptive filters. OpenStax CNX. May 12, 2005 Download for free at http://cnx.org/content/col10280/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Adaptive filters' conversation and receive update notifications?

Ask