<< Chapter < Page Chapter >> Page >
This module covers the laws the govern the manipulation of exponents in algebra.

The following are generally referred to as the “laws” or “rules” of exponents.

x a x b = x a + b size 12{x rSup { size 8{a} } x rSup { size 8{b} } =x rSup { size 8{a+b} } } {}
x a x b = x a b or 1 x b a size 12{ { {x rSup { size 8{a} } } over {x rSup { size 8{b} } } } =x rSup { size 8{a - b} } " or " { {1} over {x rSup { size 8{b - a} } } } } {}
( x a ) b = x ab size 12{ \( x rSup { size 8{a} } \) rSup { size 8{b} } =x rSup { size 8{ ital "ab"} } } {}

As with any formula, the most important thing is to be able to use them—that is, to understand what they mean. But it is also important to know where these formulae come from . And finally, in this case, the three should be memorized.

So...what do they mean? They are, of course, algebraic generalizations—statements that are true for any x size 12{x} {} , a size 12{a} {} , and b size 12{b} {} values. For instance, the first rule tells us that:

7 12 7 4 = 7 16 size 12{7 rSup { size 8{"12"} } cdot 7 rSup { size 8{4} } =7 rSup { size 8{"16"} } } {}

which you can confirm on your calculator. Similarly, the third rule promises us that

( 7 12 ) 4 = 7 48 size 12{ \( 7 rSup { size 8{"12"} } \) rSup { size 8{4} } =7 rSup { size 8{"48"} } } {}

These rules can be used to combine and simplify expressions.

Simplifying with the Rules of Exponents
x 3 4 x 5 x 9 x 11 size 12{ { { left (x rSup { size 8{3} } right ) rSup { size 8{4} } cdot x rSup { size 8{5} } } over {x rSup { size 8{9} } cdot x rSup { size 8{"11"} } } } } {}
= x 12 x 5 x 9 x 11 size 12{ {}= { {x rSup { size 8{"12"} } cdot x rSup { size 8{5} } } over {x rSup { size 8{9} } cdot x rSup { size 8{"11"} } } } } {} Third rule : ( x a ) b = x ab size 12{ \( x rSup { size 8{a} } \) rSup { size 8{b} } =x rSup { size 8{ ital "ab"} } } {} , where a = 3 size 12{a=3} {} and b = 4 size 12{b=4} {}
= x 17 x 20 size 12{ {}= { {x rSup { size 8{"17"} } } over {x rSup { size 8{"20"} } } } } {} First rul e: x a x b = x a + b size 12{x rSup { size 8{a} } x rSup { size 8{b} } =x rSup { size 8{a+b} } } {} , done on both the top and bottom
= 1 x 3 size 12{ {}= { {1} over {x rSup { size 8{3} } } } } {} Second rule : x a x b = 1 x b a size 12{ { {x rSup { size 8{a} } } over {x rSup { size 8{b} } } } = { {1} over {x rSup { size 8{b - a} } } } } {} , where we choose this form to avoid a negative exponent

Why do these rules work? It’s very easy to see, based on what an exponent is.

Why does the first rule work?
19 3 size 12{"19" rSup { size 8{3} } } {} 19 4 size 12{"19" rSup { size 8{ cdot 4} } } {}
= ( 19 19 19 ) size 12{ {}= \( "19" cdot "19" cdot "19" \) } {} ( 19 19 19 19 ) size 12{ cdot \( "19" cdot "19" cdot "19" \) } {}
= 19 7 size 12{ {}="19" rSup { size 8{7} } } {}

You see what happened? 19 3 size 12{"19" rSup { size 8{3} } } {} means three 19s multiplied; 19 4 size 12{"19" rSup { size 8{ cdot 4} } } {} means four 19s multiplied. Multiply them together, and you get seven 19s multiplied.

Why does the second rule work?
First form Second form
19 8 19 5 size 12{ { {"19" rSup { size 8{8} } } over {"19" rSup { size 8{5} } } } } {} 19 5 19 8 size 12{ { {"19" rSup { size 8{5} } } over {"19" rSup { size 8{8} } } } } {}
= 19 19 19 19 19 19 19 19 19 19 19 19 19 size 12{ {}= { {"19" cdot "19" cdot "19" cdot "19" cdot "19" cdot "19" cdot "19" cdot "19"} over {"19" cdot "19" cdot "19" cdot "19" cdot "19"} } } {} = 19 19 19 19 19 19 19 19 19 19 19 19 19 size 12{ {}= { {"19" cdot "19" cdot "19" cdot "19" cdot "19"} over {"19" cdot "19" cdot "19" cdot "19" cdot "19" cdot "19" cdot "19" cdot "19"} } } {}
Expanded for of 19 to the eighth over 19 to the fifth, matching 19's are crossed out. Expanded for of 19 to the fifth over 19 to the eighth, matching 19's are crossed out.
= 19 3 size 12{ {}="19" rSup { size 8{3} } } {} = 1 19 3 size 12{ {}= { {1} over {"19" rSup { size 8{3} } } } } {}

In this case, the key is fraction cancellations . When the top is multiplied by 19 and the bottom is multiplied by 19, canceling these 19s has the effect of dividing the top and bottom by 19. When you divide the top and bottom of a fraction by the same number, the fraction is unchanged.

You can also think of this rule as the inevitable consequence of the first rule. If 19 3 19 5 = 19 8 size 12{"19" rSup { size 8{3} } cdot "19" rSup { size 8{5} } ="19" rSup { size 8{8} } } {} , then 19 8 19 5 size 12{ { {"19" rSup { size 8{8} } } over {"19" rSup { size 8{5} } } } } {} (which asks the question “ 19 5 size 12{"19" rSup { size 8{5} } } {} times what equals 19 8 size 12{"19" rSup { size 8{8} } } {} ?”) must be 19 3 size 12{"19" rSup { size 8{3} } } {} .

Why does the third rule work?
19 3 4 size 12{ left ("19" rSup { size 8{3} } right ) rSup { size 8{4} } } {}
= 19 19 19 19 19 19 19 19 19 19 19 19 size 12{ {}= left ("19" cdot "19" cdot "19" right ) cdot left ("19" cdot "19" cdot "19" right ) cdot left ("19" cdot "19" cdot "19" right ) cdot left ("19" cdot "19" cdot "19" right )} {}
= 19 12 size 12{"19" rSup { size 8{"12"} } } {}

What does it mean to raise something to the fourth power? It means to multiply it by itself, four times. In this case, what we are multiplying by itself four times is 19 3 size 12{"19" rSup { size 8{3} } } {} , or 19 19 19 size 12{ left ("19" cdot "19" cdot "19" right )} {} . Three 19s multiplied four times makes twelve 19s multiplied.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (lecture) readings in precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11354/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (lecture) readings in precalculus' conversation and receive update notifications?

Ask