<< Chapter < Page Chapter >> Page >
  • State Coulomb’s law in terms of how the electrostatic force changes with the distance between two objects.
  • Calculate the electrostatic force between two charged point forces, such as electrons or protons.
  • Compare the electrostatic force to the gravitational attraction for a proton and an electron; for a human and the Earth.
Two spiral galaxies show the strong gravitational attraction between them as their arms appear to reach out toward one another.
This NASA image of Arp 87 shows the result of a strong gravitational attraction between two galaxies. In contrast, at the subatomic level, the electrostatic attraction between two objects, such as an electron and a proton, is far greater than their mutual attraction due to gravity. (credit: NASA/HST)

Through the work of scientists in the late 18th century, the main features of the electrostatic force    —the existence of two types of charge, the observation that like charges repel, unlike charges attract, and the decrease of force with distance—were eventually refined, and expressed as a mathematical formula. The mathematical formula for the electrostatic force is called Coulomb’s law    after the French physicist Charles Coulomb (1736–1806), who performed experiments and first proposed a formula to calculate it.

Coulomb’s law

F = k | q 1 q 2 | r 2 . size 12{F=k { {q rSub { size 8{1} } q rSub { size 8{2} } } over {r rSup { size 8{2} } } } } {}

Coulomb’s law calculates the magnitude of the force F between two point charges, q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} , separated by a distance r . In SI units, the constant k is equal to

k = 8 . 988 × 10 9 N m 2 C 2 8 . 99 × 10 9 N m 2 C 2 . size 12{k=8 "." "988" times "10" rSup { size 8{9} } { {N cdot m rSup { size 8{2} } } over {C rSup { size 8{2} } } } approx 9 "." "00" times "10" rSup { size 8{9} } { {N cdot m rSup { size 8{2} } } over {C rSup { size 8{2} } } } } {}

The electrostatic force is a vector quantity and is expressed in units of newtons. The force is understood to be along the line joining the two charges. (See [link] .)

Although the formula for Coulomb’s law is simple, it was no mean task to prove it. The experiments Coulomb did, with the primitive equipment then available, were difficult. Modern experiments have verified Coulomb’s law to great precision. For example, it has been shown that the force is inversely proportional to distance between two objects squared F 1 / r 2 size 12{ left (F prop {1} slash {r rSup { size 8{2} } } right )} {} to an accuracy of 1 part in 10 16 size 12{"10" rSup { size 8{"16"} } } {} . No exceptions have ever been found, even at the small distances within the atom.

In part a, two charges q one and q two are shown at a distance r. Force vector arrow F one two points toward left and acts on q one. Force vector arrow F two one points toward right and acts on q two. Both forces act in opposite directions and are represented by arrows of same length. In part b, two charges q one and q two are shown at a distance r. Force vector arrow F one two points toward right and acts on q one. Force vector arrow F two one points toward left and acts on q two. Both forces act toward each other and are represented by arrows of same length.
The magnitude of the electrostatic force F size 12{F} {} between point charges q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} separated by a distance r size 12{F} {} is given by Coulomb’s law. Note that Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force on q 1 size 12{q rSub { size 8{1} } } {} is equal in magnitude and opposite in direction to the force it exerts on q 2 size 12{q rSub { size 8{2} } } {} . (a) Like charges. (b) Unlike charges.

How strong is the coulomb force relative to the gravitational force?

Compare the electrostatic force between an electron and proton separated by 0 . 530 × 10 10 m size 12{0 "." "530" times "10" rSup { size 8{ - "10"} } m} {} with the gravitational force between them. This distance is their average separation in a hydrogen atom.

Strategy

To compare the two forces, we first compute the electrostatic force using Coulomb’s law, F = k | q 1 q 2 | r 2 size 12{F=k { {q rSub { size 8{1} } q rSub { size 8{2} } } over {r rSup { size 8{2} } } } } {} . We then calculate the gravitational force using Newton’s universal law of gravitation. Finally, we take a ratio to see how the forces compare in magnitude.

Solution

Entering the given and known information about the charges and separation of the electron and proton into the expression of Coulomb’s law yields

F = k | q 1 q 2 | r 2 size 12{F=k { {q rSub { size 8{1 } } q rSub { size 8{2} } } over {r rSup { size 8{2} } } } } {}
= 8.99 × 10 9 N m 2 / C 2 × ( 1.60 × 10 –19 C ) ( 1.60 × 10 –19 C ) ( 0.530 × 10 –10 m ) 2 alignl { stack { size 12{" "= left (9 "." "00 " times " 10" rSup { size 8{9} } N cdot " m" rSup { size 8{2} } /C rSup { size 8{2} } right ) times { { \( "-1" "." "60 " times " 10" rSup { size 8{"-19"} } C \) \( 1 "." "60" times " 10" rSup { size 8{"-19 "} } C \) } over { \( 0 "." "530 " times " 10" rSup { size 8{"-10"} } m \) rSup { size 8{2} } } } } {} #{} } } {}

Thus the Coulomb force is

F = 8.19 × 10 –8 N . size 12{F=" -8" "." "20 " times " 10" rSup { size 8{"-8"} } N} {}

The charges are opposite in sign, so this is an attractive force. This is a very large force for an electron—it would cause an acceleration of 8.99 × 10 22 m / s 2 size 12{9 "." "00" times "10" rSup { size 8{"22"} } {m} slash {s rSup { size 8{2} } } } {} (verification is left as an end-of-section problem).The gravitational force is given by Newton’s law of gravitation as:

F G = G mM r 2 , size 12{F rSub { size 8{G} } =" G " { {"mM"} over {r rSup { size 8{2} } } } } {}

where G = 6.67 × 10 11 N m 2 / kg 2 size 12{G=6 "." "67" times "10" rSup { size 8{ - "11"} } {N cdot m rSup { size 8{2} } } slash { ital "kg" rSup { size 8{2} } } } {} . Here m and M represent the electron and proton masses, which can be found in the appendices. Entering values for the knowns yields

F G = ( 6.67 × 10 11 N m 2 / kg 2 ) × ( 9.11 × 10 –31 kg ) ( 1.67 × 10 –27 kg ) ( 0.530 × 10 –10 m ) 2 = 3.61 × 10 –47 N

This is also an attractive force, although it is traditionally shown as positive since gravitational force is always attractive. The ratio of the magnitude of the electrostatic force to gravitational force in this case is, thus,

F F G = 2 . 27 × 10 39 . size 12{ { {F} over {F rSub { size 8{G} } } } =" 2" "." "27 " times " 10" rSup { size 8{"39"} } } {}

Discussion

This is a remarkably large ratio! Note that this will be the ratio of electrostatic force to gravitational force for an electron and a proton at any distance (taking the ratio before entering numerical values shows that the distance cancels). This ratio gives some indication of just how much larger the Coulomb force is than the gravitational force between two of the most common particles in nature.

Got questions? Get instant answers now!

Questions & Answers

the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
what is cell divisoin?
Aron Reply
Diversity of living thing
ISCONT
what is cell division
Aron Reply
Cell division is the process by which a single cell divides into two or more daughter cells. It is a fundamental process in all living organisms and is essential for growth, development, and reproduction. Cell division can occur through either mitosis or meiosis.
AI-Robot
What is life?
Allison Reply
life is defined as any system capable of performing functions such as eating, metabolizing,excreting,breathing,moving,Growing,reproducing,and responding to external stimuli.
Mohamed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask