<< Chapter < Page Chapter >> Page >

Body symmetry

Animals may be asymmetrical, radial, or bilateral in form ( [link] ). Asymmetrical animals are animals with no pattern or symmetry; an example of an asymmetrical animal is a sponge ( [link] a ). An organism with radial symmetry    ( [link] b ) has a longitudinal (up-and-down) orientation: Any plane cut along this up–down axis produces roughly mirror-image halves. An example of an organism with radial symmetry is a sea anemone.

Illustration a shows an asymmetrical sponge with a tube-like body and a growth off to one side. Illustration b shows a sea anemone with a tube-like, radially symmetrical body. Tentacles grow from the top of the tube. Three vertical planes arranged 120 degrees apart dissect the body. The half of the body on one side of each plane is a mirror image of the body on the other side. Illustration c shows a goat with a bilaterally symmetrical body. A plane runs from front to back through the middle of the goat, dissecting the body into left and right halves, which are mirror images of each other. The top part of the goat is defined as dorsal, and the bottom part is defined as ventral. The front of the goat is defined as anterior, and the back is defined as posterior.
Animals exhibit different types of body symmetry. The (a) sponge is asymmetrical and has no planes of symmetry, the (b) sea anemone has radial symmetry with multiple planes of symmetry, and the (c) goat has bilateral symmetry with one plane of symmetry.

Bilateral symmetry is illustrated in [link] c using a goat. The goat also has upper and lower sides to it, but they are not symmetrical. A vertical plane cut from front to back separates the animal into roughly mirror-image right and left sides. Animals with bilateral symmetry also have a “head” and “tail” (anterior versus posterior) and a back and underside (dorsal versus ventral).

Concept in action

Watch this video to see a quick sketch of the different types of body symmetry.

Layers of tissues

Most animal species undergo a layering of early tissues during embryonic development. These layers are called germ layers . Each layer develops into a specific set of tissues and organs. Animals develop either two or three embryonic germs layers ( [link] ). The animals that display radial symmetry develop two germ layers, an inner layer (endoderm) and an outer layer (ectoderm). These animals are called diploblasts . Animals with bilateral symmetry develop three germ layers: an inner layer (endoderm), an outer layer (ectoderm), and a middle layer (mesoderm). Animals with three germ layers are called triploblasts .

The left illustration shows the two embryonic germ layers of a diploblast. The inner layer is the endoderm, and the outer layer is the ectoderm. Sandwiched between the endoderm and the ectoderm is a non-living layer. The right illustration shows the three embryonic germ layers of a triploblast. Like the diploblast, the triploblast has an inner endoderm and an outer ectoderm. Sandwiched between these two layers is a living mesoderm.
During embryogenesis, diploblasts develop two embryonic germ layers: an ectoderm and an endoderm. Triploblasts develop a third layer—the mesoderm—between the endoderm and ectoderm.

Presence or absence of a coelom

Triploblasts may develop an internal body cavity derived from mesoderm, called a coelom    (pr. see-LŌM). This epithelial-lined cavity is a space, usually filled with fluid, which lies between the digestive system and the body wall. It houses organs such as the kidneys and spleen, and contains the circulatory system. Triploblasts that do not develop a coelom are called acoelomates , and their mesoderm region is completely filled with tissue, although they have a gut cavity. Examples of acoelomates include the flatworms. Animals with a true coelom are called eucoelomates (or coelomates) ( [link] ). A true coelom arises entirely within the mesoderm germ layer. Animals such as earthworms, snails, insects, starfish, and vertebrates are all eucoelomates. A third group of triploblasts has a body cavity that is derived partly from mesoderm and partly from endoderm tissue. These animals are called pseudocoelomates . Roundworms are examples of pseudocoelomates. New data on the relationships of pseudocoelomates suggest that these phyla are not closely related and so the evolution of the pseudocoelom must have occurred more than once ( [link] ). True coelomates can be further characterized based on features of their early embryological development.

Part a shows the body plan of acoelomates, including flatworms. Acoelomates have a central digestive cavity. Outside this digestive cavity are three tissue layers: an inner endoderm, a central mesoderm, and an outer ectoderm. The photo shows a swimming flatworm, which has the appearance of a frilly black and pink ribbon. Part b shows the body plan of eucoelomates, which include annelids, mollusks, arthropods, echinoderms, and chordates. Eucoelomates have the same tissue layers as acoelomates, but a cavity called a coelom exists within the mesoderm. The coelom is divided into two symmetrical parts that are separated by two spokes of mesoderm. The photo shows a swimming annelid known as a bloodworm. The bloodworm has a tubular body that is tapered at each end. Numerous appendages radiate from either side. Part c shows the body plan of pseudocoelomates, which include roundworms. Like the acoelomates and eucoelomates, the pseudocoelomates have an endoderm, a mesoderm, and an ectoderm. However, in pseudocoelomates, a pseudocoelom separates the endoderm from the mesoderm. The photo shows a roundworm, or nematode, which has a tubular body.
Triploblasts may be acoelomates, eucoelomates, or pseudocoelomates. Eucoelomates have a body cavity within the mesoderm, called a coelom, which is lined with mesoderm tissue. Pseudocoelomates have a similar body cavity, but it is lined with mesoderm and endoderm tissue. (credit a: modification of work by Jan Derk; credit b: modification of work by NOAA; credit c: modification of work by USDA, ARS)

Protostomes and deuterostomes

Bilaterally symmetrical, triploblastic eucoelomates can be divided into two groups based on differences in their early embryonic development. Protostomes include phyla such as arthropods, mollusks, and annelids. Deuterostomes include the chordates and echinoderms. These two groups are named from which opening of the digestive cavity develops first: mouth or anus. The word protostome comes from Greek words meaning “mouth first,” and deuterostome originates from words meaning “mouth second” (in this case, the anus develops first). This difference reflects the fate of a structure called the blastopore ( [link] ), which becomes the mouth in protostomes and the anus in deuterostomes. Other developmental characteristics differ between protostomes and deuterostomes, including the mode of formation of the coelom and the early cell division of the embryo.

The illustration compares the development of protostomes and deuterostomes. In both protostomes and deuterostomes, the gastrula, which resembles a hollow ball of cells, contains an indentation called a blastopore. In protostomes, two circular layers of mesoderm form inside the gastrula, containing the coelom. As the protostome develops, the mesoderm grows and fuses with the gastrula cell layer. The blastopore becomes the mouth, and a second opening forms opposite the mouth, which becomes the anus. In deuterostomes, two groups of gastrula cells in the blastopore grow inward to form the mesoderm. As the deuterostome develops, the mesoderm pinches off and fuses, forming a second body cavity. The body plan of the deuterostome at this stage looks very similar to that of the protostome, but the blastopore becomes the anus, and the second opening becomes the mouth.
Eucoelomates can be divided into two groups, protostomes and deuterostomes, based on their early embryonic development. Two of these differences include the origin of the mouth opening and the way in which the coelom is formed.

Section summary

Animals constitute a diverse kingdom of organisms. Although animals range in complexity from simple sea sponges to human beings, most members share certain features. Animals are eukaryotic, multicellular, heterotrophic organisms that ingest their food and usually develop into motile creatures with a fixed body plan. Most members of the animal kingdom have differentiated tissues of four main classes—nervous, muscular, connective, and epithelial—that are specialized to perform different functions. Most animals reproduce sexually, leading to a developmental sequence that is relatively similar across the animal kingdom.

Organisms in the animal kingdom are classified based on their body morphology and development. True animals are divided into those with radial versus bilateral symmetry. Animals with three germ layers, called triploblasts, are further characterized by the presence or absence of an internal body cavity called a coelom. Animals with a body cavity may be either coelomates or pseudocoelomates, depending on which tissue gives rise to the coelom. Coelomates are further divided into two groups called protostomes and deuterostomes, based on a number of developmental characteristics.

Art connection

[link] Which of the following statements is false?

  1. Eumetazoa have specialized tissues and Parazoa do not.
  2. Both acoelomates and pseudocoelomates have a body cavity.
  3. Chordates are more closely related to echinoderms than to rotifers according to the figure.
  4. Some animals have radial symmetry, and some animals have bilateral symmetry.

[link] B

Questions & Answers

how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Which of the following statements is true of epistasis
Houdini Reply
Why do phospolipids tend to spontaneously orient themselves into something resembling a membrane
catli Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Concepts of biology for slcc biol 1010. OpenStax CNX. Aug 13, 2013 Download for free at https://legacy.cnx.org/content/col11555/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology for slcc biol 1010' conversation and receive update notifications?