# 13.1 Occurrence, preparation, and properties of transition metals  (Page 12/27)

 Page 12 / 27

Iron(II) can be oxidized to iron(III) by dichromate ion, which is reduced to chromium(III) in acid solution. A 2.5000-g sample of iron ore is dissolved and the iron converted into iron(II). Exactly 19.17 mL of 0.0100 M Na 2 Cr 2 O 7 is required in the titration. What percentage of the ore sample was iron?

2.57%

How many cubic feet of air at a pressure of 760 torr and 0 °C is required per ton of Fe 2 O 3 to convert that Fe 2 O 3 into iron in a blast furnace? For this exercise, assume air is 19% oxygen by volume.

Find the potentials of the following electrochemical cell:

Cd | Cd 2+ , M = 0.10 ‖ Ni 2+ , M = 0.50 | Ni

0.167 V

A 2.5624-g sample of a pure solid alkali metal chloride is dissolved in water and treated with excess silver nitrate. The resulting precipitate, filtered and dried, weighs 3.03707 g. What was the percent by mass of chloride ion in the original compound? What is the identity of the salt?

The standard reduction potential for the reaction ${\left[\text{Co}{\left({\text{H}}_{2}\text{O}\right)}_{6}\right]}^{3+}\left(aq\right)+{\text{e}}^{-}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[{\text{Co}\left(\text{H}}_{2}\text{O}{\right)}_{6}\right]}^{2+}\left(aq\right)$ is about 1.8 V. The reduction potential for the reaction ${\left[\text{Co}{\left({\text{NH}}_{3}\right)}_{6}\right]}^{3+}\left(aq\right)+{\text{e}}^{-}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[\text{Co}{\left({\text{NH}}_{3}\right)}_{6}\right]}^{2+}\left(aq\right)$ is +0.1 V. Calculate the cell potentials to show whether the complex ions, [Co(H 2 O) 6 ] 2+ and/or [Co(NH 3 ) 6 ] 2+ , can be oxidized to the corresponding cobalt(III) complex by oxygen.

E ° = −0.6 V, E ° is negative so this reduction is not spontaneous. E ° = +1.1 V

Predict the products of each of the following reactions. (Note: In addition to using the information in this chapter, also use the knowledge you have accumulated at this stage of your study, including information on the prediction of reaction products.)

(a) ${\text{MnCO}}_{3}\left(s\right)+\text{HI}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(b) $\text{CoO}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(c) $\text{La}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(d) $\text{V}\left(s\right)+{\text{VCl}}_{4}\left(s\right)\phantom{\rule{0.2em}{0ex}}⟶$

(e) $\text{Co}\left(s\right)+{xs\text{F}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(f) ${\text{CrO}}_{3}\left(s\right)+\text{CsOH}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

Predict the products of each of the following reactions. (Note: In addition to using the information in this chapter, also use the knowledge you have accumulated at this stage of your study, including information on the prediction of reaction products.)

(a) $\text{Fe}\left(s\right)+{\text{H}}_{2}{\text{SO}}_{4}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(b) ${\text{FeCl}}_{3}\left(aq\right)+\text{NaOH}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(c) $\text{Mn}{\left(\text{OH}\right)}_{2}\left(s\right)+\text{HBr}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(d) $\text{Cr}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(e) ${\text{Mn}}_{2}{\text{O}}_{3}\left(s\right)+\text{HCl}\left(aq\right)⟶$

(f) $\text{Ti}\left(s\right)+xs{\text{F}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(a) $\text{Fe}\left(s\right)+2{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Fe}}^{2+}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)+{\text{H}}_{2}\left(g\right)+2{\text{H}}_{2}\text{O}\left(l\right);$ (b) ${\text{FeCl}}_{3}\left(aq\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+{\text{3OH}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\text{Fe}{\left(\text{OH}\right)}_{3}\left(s\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+{\text{3Cl}}^{\text{+}}\left(aq\right);$ (c) $\text{Mn}{\left(\text{OH}\right)}_{2}\left(s\right)+2{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{2Br}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Mn}}^{2+}\left(aq\right)+{\text{2Br}}^{\text{−}}\left(aq\right)+4{\text{H}}_{2}\text{O}\left(l\right);$ (d) $\text{4Cr}\left(s\right)+3{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}2{\text{Cr}}_{2}{\text{O}}_{3}\left(s\right);$ (e) ${\text{Mn}}_{2}{\text{O}}_{3}\left(s\right)+6{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{6Cl}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}2{\text{MnCl}}_{3}\left(s\right)+9{\text{H}}_{2}\text{O}\left(l\right);$ (f) $\text{Ti}\left(s\right)+xs{\text{F}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{TiF}}_{4}\left(g\right)$

Describe the electrolytic process for refining copper.

Predict the products of the following reactions and balance the equations.

(a) Zn is added to a solution of Cr 2 (SO 4 ) 3 in acid.

(b) FeCl 2 is added to a solution containing an excess of ${\text{Cr}}_{2}{\text{O}}_{7}{}^{2-}$ in hydrochloric acid.

(c) Cr 2+ is added to ${\text{Cr}}_{2}{\text{O}}_{7}{}^{2-}$ in acid solution.

(d) Mn is heated with CrO 3 .

(e) CrO is added to 2HNO 3 in water.

(f) FeCl 3 is added to an aqueous solution of NaOH.

(a)
$\begin{array}{}\\ \\ {\text{Cr}}_{2}{\left({\text{SO}}_{4}\right)}_{3}\left(aq\right)+\text{2Zn}\left(s\right)+{\text{2H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{2Zn}}^{2+}\left(aq\right)+{\text{H}}_{2}\left(g\right)+{\text{2H}}_{2}\text{O}\left(l\right)+{\text{2Cr}}^{2+}\left(aq\right)+{\text{3SO}}_{4}{}^{2-}\left(aq\right);\end{array}$ (b) ${\text{4TiCl}}_{3}\left(s\right)+{\text{CrO}}_{4}{}^{2-}\left(aq\right)+{\text{8H}}^{\text{+}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{4Ti}}^{4+}\left(aq\right)+\text{Cr}\left(s\right)+{\text{4H}}_{2}\text{O}\left(l\right)+{\text{12Cl}}^{\text{−}}\left(aq\right);$ (c) In acid solution between pH 2 and pH 6, ${\text{CrO}}_{4}{}^{2-}$ forms ${\text{HCrO}}_{4}{}^{\text{−}},$ which is in equilibrium with dichromate ion. The reaction is ${\text{2HCrO}}_{4}{}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Cr}}_{2}{\text{O}}_{7}{}^{2-}\left(aq\right)+{\text{H}}_{2}\text{O}\left(l\right).$ At other acidic pHs, the reaction is ${\text{3Cr}}^{2+}\left(aq\right)+{\text{CrO}}_{4}{}^{2-}\left(aq\right)+{\text{8H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{4Cr}}^{3+}\left(aq\right)+{\text{12H}}_{2}\text{O}\left(l\right);$ (d) ${\text{8CrO}}_{3}\left(s\right)+\text{9Mn}\left(s\right)\phantom{\rule{0.2em}{0ex}}\stackrel{\text{Δ}}{⟶}\phantom{\rule{0.2em}{0ex}}{\text{4Cr}}_{2}{\text{O}}_{3}\left(s\right)+{\text{3Mn}}_{3}{\text{O}}_{4}\left(s\right);$ (e) $\text{CrO}\left(s\right)+{\text{2H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{2NO}}_{3}{}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Cr}}^{2+}\left(aq\right)+{\text{2NO}}_{3}{}^{\text{−}}\left(aq\right)+{\text{3H}}_{2}\text{O}\left(l\right);$ (f) ${\text{CrCl}}_{3}\left(s\right)+\text{3NaOH}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Cr}{\left(\text{OH}\right)}_{3}\left(s\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+{\text{3Cl}}^{\text{−}}\left(aq\right)$

What is the gas produced when iron(II) sulfide is treated with a nonoxidizing acid?

Predict the products of each of the following reactions and then balance the chemical equations.

(a) Fe is heated in an atmosphere of steam.

(b) NaOH is added to a solution of Fe(NO 3 ) 3 .

(c) FeSO 4 is added to an acidic solution of KMnO 4 .

(d) Fe is added to a dilute solution of H 2 SO 4 .

(e) A solution of Fe(NO 3 ) 2 and HNO 3 is allowed to stand in air.

(f) FeCO 3 is added to a solution of HClO 4 .

(g) Fe is heated in air.

(a) $\text{3Fe}\left(s\right)+{\text{4H}}_{2}\text{O}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Fe}}_{3}{\text{O}}_{4}\left(s\right)+{\text{4H}}_{2}\left(g\right);$ (b) $\text{3NaOH}\left(aq\right)+\text{Fe}{\left({\text{NO}}_{3}\right)}_{3}\left(aq\right)\phantom{\rule{0.2em}{0ex}}\stackrel{\phantom{\rule{0.5em}{0ex}}{\text{H}}_{2}\text{O}\phantom{\rule{0.5em}{0ex}}}{\to }\phantom{\rule{0.2em}{0ex}}\text{Fe}{\left(\text{OH}\right)}_{3}\left(s\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+3{\text{NO}}_{3}{}^{\text{−}}\left(aq\right);$ (c) $\begin{array}{}\\ \\ \\ \text{MnO}{}^{4-}+5\text{Fe}{\text{2+}}^{}+8\text{H}{\text{+}}^{}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Mn}{}^{\text{2+}}+5{\text{Fe}}_{3}+4{\text{H}}_{2}\text{O}\end{array};$ (d) $\text{Fe}\left(s\right)+{\text{2H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Fe}}^{2+}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)+{\text{H}}_{2}\left(g\right)+{\text{2H}}_{2}\text{O}\left(l\right);$ (e) ${\text{4Fe}}^{2+}\left(aq\right)+{\text{O}}_{2}\left(g\right)+{\text{4HNO}}_{3}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{4Fe}}^{3+}\left(aq\right)+{\text{2H}}_{2}\text{O}\left(l\right)+{\text{4NO}}_{3}{}^{\text{−}}\left(aq\right);$ (f) ${\text{FeCO}}_{3}\left(s\right)+{\text{2HClO}}_{4}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Fe}{\left({\text{ClO}}_{4}\right)}_{2}\left(aq\right)+{\text{H}}_{2}\text{O}\left(l\right)+{\text{CO}}_{2}\left(g\right);$ (g) $\text{3Fe}\left(s\right)+{\text{2O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}\stackrel{\phantom{\rule{0.2em}{0ex}}\text{Δ}\phantom{\rule{0.2em}{0ex}}}{⟶}\phantom{\rule{0.2em}{0ex}}{\text{Fe}}_{3}{\text{O}}_{4}\left(s\right)$

Balance the following equations by oxidation-reduction methods; note that three elements change oxidation state.
$\text{Co}{\left({\text{NO}}_{3}\right)}_{2}\left(s\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Co}}_{2}{\text{O}}_{3}\left(s\right)+{\text{NO}}_{2}\left(g\right)+{\text{O}}_{2}\left(g\right)$

Dilute sodium cyanide solution is slowly dripped into a slowly stirred silver nitrate solution. A white precipitate forms temporarily but dissolves as the addition of sodium cyanide continues. Use chemical equations to explain this observation. Silver cyanide is similar to silver chloride in its solubility.

${\text{Ag}}^{\text{+}}\left(aq\right)+{\text{CN}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{AgCN}\left(s\right)$
$\begin{array}{l}{\text{Ag}}^{\text{+}}\left(aq\right)+2{\text{CN}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[\text{Ag}{\text{(CN)}}_{2}\right]}^{\text{−}}\left(aq\right)\\ \text{AgCN}\left(s\right)+{\text{CN}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[\text{Ag}{\text{(CN)}}_{2}\right]}^{\text{−}}\left(aq\right)\end{array}$

Predict which will be more stable, [CrO 4 ] 2− or [WO 4 ] 2− , and explain.

Give the oxidation state of the metal for each of the following oxides of the first transition series. (Hint: Oxides of formula M 3 O 4 are examples of mixed valence compounds in which the metal ion is present in more than one oxidation state. It is possible to write these compound formulas in the equivalent format MO·M 2 O 3 , to permit estimation of the metal’s two oxidation states.)

(a) Sc 2 O 3

(b) TiO 2

(c) V 2 O 5

(d) CrO 3

(e) MnO 2

(f) Fe 3 O 4

(g) Co 3 O 4

(h) NiO

(i) Cu 2 O

(a) Sc 3+ ; (b) Ti 4+ ; (c) V 5+ ; (d) Cr 6+ ; (e) Mn 4+ ; (f) Fe 2+ and Fe 3+ ; (g) Co 2+ and Co 3+ ; (h) Ni 2+ ; (i) Cu +

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
how do you find theWhat are the wavelengths and energies per photon of two lines
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF