<< Chapter < Page Chapter >> Page >

Congratulations for reaching the end of a long chapter! We have talked a little bit about old computers, CISC, RISC, post-RISC, and EPIC, and mentioned supercomputers in passing. I think it’s interesting to observe that RISC processors are a branch off a long-established tree. Many of the ideas that have gone into RISC designs are borrowed from other types of computers, but none of them evolved into RISC — RISC started at a discontinuity. There were hints of a RISC revolution (the CDC 6600 and the IBM 801 project) but it really was forced on the world (for its own good) by CPU designers at Berkeley and Stanford in the 1980s.

As RISC has matured, there have been many improvements. Each time it appears that we have reached the limit of the performance of our microprocessors there is a new architectural breakthrough improving our single CPU performance. How long can it continue? It is clear that as long as competition continues, there is significant performance headroom using the out-of-order execution as the clock rates move from a typical 200 MHz to 500+ MHz. DEC’s Alpha 21264 is planned to have four-way out-of-order execution at 500 MHz by 1998. As of 1998, vendors are beginning to reveal their plans for processors clocked at 1000 MHz or 1 GHz.

Unfortunately, developing a new processor is a very expensive task. If enough companies merge and competition diminishes, the rate of innovation will slow. Hopefully we will be seeing four processors on a chip, each 16-way out-of-order superscalar, clocked at 1 GHz for $200 before we eliminate competition and let the CPU designers rest on their laurels. At that point, scalable parallel processing will suddenly become interesting again.

How will designers tackle some of the fundamental architectural problems, perhaps the largest being memory systems? Even though the post-RISC architecture and the EPIC alleviate the latency problems somewhat, the memory bottleneck will always be there. The good news is that even though memory performance improves more slowly than CPU performance, memory system performance does improve over time. We’ll look next at techniques for building memory systems.

As discussed in [link] , the exercises that come at the end of most chapters in this book are not like the exercises in most engineering texts. These exercises are mostly thought experiments, without well-defined answers, designed to get you thinking about the hardware on your desk.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask