# 12.4 The regression equation  (Page 2/2)

 Page 2 / 2

$\epsilon$ = the Greek letter epsilon

For each data point, you can calculate the residuals or errors, ${y}_{i}-{\stackrel{^}{y}}_{i}={\epsilon }_{i}$ for $i=\text{1, 2, 3, ..., 11}$ .

Each $|\epsilon |$ is a vertical distance.

For the example about the third exam scores and the final exam scores for the 11 statistics students, there are 11 data points. Therefore, there are 11 $\epsilon$ values. If you square each $\epsilon$ and add, you get

$\left({\epsilon }_{1}{\right)}^{2}+\left({\epsilon }_{2}{\right)}^{2}+\text{...}+\left({\epsilon }_{11}{\right)}^{2}=\stackrel{11}{\underset{\text{i = 1}}{\Sigma }}{\epsilon }^{2}$

This is called the Sum of Squared Errors (SSE) .

Using calculus, you can determine the values of $a$ and $b$ that make the SSE a minimum. When you make the SSE a minimum, you have determined the points that are on the line of best fit. It turns out thatthe line of best fit has the equation:

$\stackrel{^}{y}=a+\text{bx}$

where $a=\overline{y}-b\cdot \overline{x}$ and $b=\frac{\Sigma \left(x-\overline{x}\right)\cdot \left(y-\overline{y}\right)}{{\Sigma \left(x-\overline{x}\right)}^{2}}$ .

$\overline{x}$ and $\overline{y}$ are the sample means of the $x$ values and the $y$ values, respectively. The best fit line always passes through the point $\left(\overline{x},\overline{y}\right)$ .

The slope $b$ can be written as $b=r\cdot \left(\frac{{s}_{y}}{{s}_{x}}\right)$ where ${s}_{y}$ = the standard deviation of the $y$ values and ${s}_{x}$ = the standard deviation of the $x$ values. $r$ is the correlation coefficient which is discussed in the next section.

## Least squares criteria for best fit

The process of fitting the best fit line is called linear regression . The idea behind finding the best fit line is based on the assumption that the data are scattered about a straight line. The criteria for the best fit line is that the sum of the squared errors (SSE) is minimized, that is made as small as possible. Any other line you might choose would have a higher SSE than the best fit line. This best fit line is called the least squares regression line .

Computer spreadsheets, statistical software, and many calculators can quickly calculate the best fit line and create the graphs. The calculations tend to be tedious if done by hand. Instructions to use the TI-83, TI-83+, and TI-84+ calculators to find the best fit line and create a scatterplot are shown at the end of this section.

## Third exam vs final exam example:

The graph of the line of best fit for the third exam/final exam example is shown below:

The least squares regression line (best fit line) for the third exam/final exam example has the equation:

$\stackrel{^}{y}=-173.51+\text{4.83x}\phantom{\rule{20pt}{0ex}}$
• Remember, it is always important to plot a scatter diagram first. If the scatter plot indicates that there is a linear relationship betweenthe variables, then it is reasonable to use a best fit line to make predictions for $y$ given $x$ within the domain of $x$ -values in the sample data, but not necessarily for $x$ -values outside that domain.
• You could use the line to predict the final exam score for a student who earned a grade of 73 on the third exam.
• You should NOT use the line to predict the final exam score for a student who earned a grade of 50 on the third exam, because 50 is not within the domain of the x-values in the sample data, which are between 65 and 75.

## Understanding slope

The slope of the line, b, describes how changes in the variables are related. It is important to interpret the slope of the line in the context of the situation represented by the data. You should be able to write a sentence interpreting the slope in plain English.

INTERPRETATION OF THE SLOPE: The slope of the best fit line tells us how the dependent variable (y) changes for every one unit increase in the independent (x) variable, on average.

## Third exam vs final exam example

• Slope: The slope of the line is b = 4.83.
• Interpretation: For a one point increase in the score on the third exam, the final exam score increases by 4.83 points, on average.

## Using the linear regression t test: linregttest

1. In the STAT list editor, enter the X data in list L1 and the Y data in list L2, paired so that the corresponding (x,y) values are next to each other in the lists. (If a particular pair of values is repeated, enter it as many times as it appears in the data.)
2. On the STAT TESTS menu, scroll down with the cursor to select the LinRegTTest. (Be careful to select LinRegTTest as some calculators may also have a different item called LinRegTInt.)
3. On the LinRegTTest input screen enter: Xlist: L1 ; Ylist: L2 ; Freq: 1
4. On the next line, at the prompt β or ρ, highlight "≠ 0" and press ENTER
5. Leave the line for "RegEq:" blank
6. Highlight Calculate and press ENTER.

The output screen contains a lot of information. For now we will focus on a few items from the output, and will return later to the other items.

• The second line says y=a+bx. Scroll down to find the values a=-173.513, and b=4.8273 ; the equation of the best fit line is $\stackrel{^}{y}=-173.51+\text{4.83}x\phantom{\rule{20pt}{0ex}}$
• The two items at the bottom are $r^{2}$ = .43969 and $r$ =.663. For now, just note where to find these values; we will discuss them in the next two sections.

## Graphing the scatterplot and regression line

1. We are assuming your X data is already entered in list L1 and your Y data is in list L2
2. Press 2nd STATPLOT ENTER to use Plot 1
3. On the input screen for PLOT 1, highlight On and press ENTER
4. For TYPE: highlight the very first icon which is the scatterplot and press ENTER
5. Indicate Xlist: L1 and Ylist: L2
6. For Mark: it does not matter which symbol you highlight.
7. Press the ZOOM key and then the number 9 (for menu item "ZoomStat") ; the calculator will fit the window to the data
8. To graph the best fit line, press the "Y=" key and type the equation -173.5+4.83X into equation Y1. (The X key is immediately left of the STAT key). Press ZOOM 9 again to graph it.
9. Optional: If you want to change the viewing window, press the WINDOW key. Enter your desired window using Xmin, Xmax, Ymin, Ymax

**With contributions from Roberta Bloom

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
1 It is estimated that 30% of all drivers have some kind of medical aid in South Africa. What is the probability that in a sample of 10 drivers: 3.1.1 Exactly 4 will have a medical aid. (8) 3.1.2 At least 2 will have a medical aid. (8) 3.1.3 More than 9 will have a medical aid.