# 11.8 Binding energy

 Page 1 / 5
• Define and discuss binding energy.
• Calculate the binding energy per nucleon of a particle.

The more tightly bound a system is, the stronger the forces that hold it together and the greater the energy required to pull it apart. We can therefore learn about nuclear forces by examining how tightly bound the nuclei are. We define the binding energy    (BE) of a nucleus to be the energy required to completely disassemble it into separate protons and neutrons . We can determine the BE of a nucleus from its rest mass. The two are connected through Einstein’s famous relationship $E=\left(\Delta m\right){c}^{2}$ . A bound system has a smaller mass than its separate constituents; the more tightly the nucleons are bound together, the smaller the mass of the nucleus.

Imagine pulling a nuclide apart as illustrated in [link] . Work done to overcome the nuclear forces holding the nucleus together puts energy into the system. By definition, the energy input equals the binding energy BE. The pieces are at rest when separated, and so the energy put into them increases their total rest mass compared with what it was when they were glued together as a nucleus. That mass increase is thus $\text{Δ}m=\text{BE}/{c}^{2}$ . This difference in mass is known as mass defect . It implies that the mass of the nucleus is less than the sum of the masses of its constituent protons and neutrons. A nuclide ${}^{A}\text{X}$ has $Z$ protons and $N$ neutrons, so that the difference in mass is

$\Delta m=\left({\text{Zm}}_{p}+{\text{Nm}}_{n}\right)-{m}_{\text{tot}}\text{.}$

Thus,

$\text{BE}=\left(\Delta m\right){c}^{2}=\left[\left({\text{Zm}}_{p}+{\text{Nm}}_{n}\right)-{m}_{\text{tot}}\right]{c}^{2}\text{,}$

where ${m}_{\text{tot}}$ is the mass of the nuclide ${}^{A}\text{X}$ , ${m}_{p}$ is the mass of a proton, and ${m}_{n}$ is the mass of a neutron. Traditionally, we deal with the masses of neutral atoms. To get atomic masses into the last equation, we first add $Z$ electrons to ${m}_{\text{tot}}$ , which gives $m\left({}^{A}\text{X}\right)$ , the atomic mass of the nuclide. We then add $Z$ electrons to the $Z$ protons, which gives $\text{Zm}\left({}^{1}\text{H}\right)$ , or $Z$ times the mass of a hydrogen atom. Thus the binding energy of a nuclide ${}^{A}\text{X}$ is

$\text{BE}=\left\{\left[\text{Zm}\left({}^{1}\text{H}\right)+{\text{Nm}}_{n}\right]-m\left({}^{A}X\right)\right\}{c}^{2}.$

The atomic masses can be found in Appendix A, most conveniently expressed in unified atomic mass units u ( $1\phantom{\rule{0.25em}{0ex}}\text{u}=\text{931}\text{.}5\phantom{\rule{0.25em}{0ex}}\text{MeV}/{c}^{2}$ ). BE is thus calculated from known atomic masses.

## Things great and small

Nuclear Decay Helps Explain Earth’s Hot Interior

A puzzle created by radioactive dating of rocks is resolved by radioactive heating of Earth’s interior. This intriguing story is another example of how small-scale physics can explain large-scale phenomena.

Radioactive dating plays a role in determining the approximate age of the Earth. The oldest rocks on Earth solidified about $3\text{.}5×{\text{10}}^{9}$ years ago—a number determined by uranium-238 dating. These rocks could only have solidified once the surface of the Earth had cooled sufficiently. The temperature of the Earth at formation can be estimated based on gravitational potential energy of the assemblage of pieces being converted to thermal energy. Using heat transfer concepts it is then possible to calculate how long it would take for the surface to cool to rock-formation temperatures. The result is about ${\text{10}}^{9}$ years. The first rocks formed have been solid for $3\text{.}5×{\text{10}}^{9}$ years, so that the age of the Earth is approximately $4\text{.}5×{\text{10}}^{9}$ years. There is a large body of other types of evidence (both Earth-bound and solar system characteristics are used) that supports this age. The puzzle is that, given its age and initial temperature, the center of the Earth should be much cooler than it is today (see [link] ).

We know from seismic waves produced by earthquakes that parts of the interior of the Earth are liquid. Shear or transverse waves cannot travel through a liquid and are not transmitted through the Earth’s core. Yet compression or longitudinal waves can pass through a liquid and do go through the core. From this information, the temperature of the interior can be estimated. As noticed, the interior should have cooled more from its initial temperature in the $4\text{.}5×{\text{10}}^{9}$ years since its formation. In fact, it should have taken no more than about ${\text{10}}^{9}$ years to cool to its present temperature. What is keeping it hot? The answer seems to be radioactive decay of primordial elements that were part of the material that formed the Earth (see the blowup in [link] ).

Nuclides such as ${}^{\text{238}}\text{U}$ and ${}^{\text{40}}\text{K}$ have half-lives similar to or longer than the age of the Earth, and their decay still contributes energy to the interior. Some of the primordial radioactive nuclides have unstable decay products that also release energy— ${}^{\text{238}}\text{U}$ has a long decay chain of these. Further, there were more of these primordial radioactive nuclides early in the life of the Earth, and thus the activity and energy contributed were greater then (perhaps by an order of magnitude). The amount of power created by these decays per cubic meter is very small. However, since a huge volume of material lies deep below the surface, this relatively small amount of energy cannot escape quickly. The power produced near the surface has much less distance to go to escape and has a negligible effect on surface temperatures.

A final effect of this trapped radiation merits mention. Alpha decay produces helium nuclei, which form helium atoms when they are stopped and capture electrons. Most of the helium on Earth is obtained from wells and is produced in this manner. Any helium in the atmosphere will escape in geologically short times because of its high thermal velocity.

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!