<< Chapter < Page Chapter >> Page >
A diagram is shown which has a white sphere labeled “superscript, 1, subscript 0, n” followed by a right-facing arrow and a large sphere composed of many smaller white and green spheres labeled “superscript, 235, subscript 92, U.” The single sphere has impacted the larger sphere. A right-facing arrow leads from the larger sphere to a vertical dumbbell shaped collection of the same white and green spheres labeled “superscript, 236, subscript 92, U, Unstable nucleus.” Two right-facing arrows lead from the top and bottom of this structure to two new spheres that are also composed of green and white spheres and are slightly smaller than the others. The top sphere is labeled “superscript, 92, subscript 36, K r” while the lower one is labeled “superscript, 141, subscript 56, B a.” A starburst pattern labeled “Energy” lies between these two spheres and has three right-facing arrows leading from it to three white spheres labeled “3, superscript, 1, subscript 0, n.” A balanced nuclear equation is written below the diagram and says “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 236, subscript 92, U, yield arrow, superscript, 141, subscript 56, B a, plus sign, superscript, 92, subscript 36, K r, plus sign, 3, superscript, 1, subscript 0, n.”
When a slow neutron hits a fissionable U-235 nucleus, it is absorbed and forms an unstable U-236 nucleus. The U-236 nucleus then rapidly breaks apart into two smaller nuclei (in this case, Ba-141 and Kr-92) along with several neutrons (usually two or three), and releases a very large amount of energy.

Among the products of Meitner, Hahn, and Strassman’s fission reaction were barium, krypton, lanthanum, and cerium, all of which have nuclei that are more stable than uranium-235. Since then, hundreds of different isotopes have been observed among the products of fissionable substances. A few of the many reactions that occur for U-235, and a graph showing the distribution of its fission products and their yields, are shown in [link] . Similar fission reactions have been observed with other uranium isotopes, as well as with a variety of other isotopes such as those of plutonium.

Five nuclear equations and a graph are shown. The first equation is “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 236, subscript 92, U, yield arrow, superscript, 90, subscript 38, S r, plus sign, superscript, 144, subscript 54, X e, plus sign, 2, superscript, 1, subscript 0, n.” The second equation is “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 236, subscript 92, U, yield arrow, superscript, 87, subscript 35, B r, plus sign, superscript, 146, subscript 57, L a, plus sign, 3, superscript, 1, subscript 0, n.” The third equation is “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 236, subscript 92, U, yield arrow, superscript, 97, subscript 37, R b, plus sign, superscript, 137, subscript 55, C s, plus sign, 3, superscript, 1, subscript 0, n.” The fourth equation is “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 236, subscript 92, U, yield arrow, superscript, 137, subscript 52, T e, plus sign, superscript, 97, subscript 40, Z r, plus sign, 2, superscript, 1, subscript 0, n.” The fifth equation is “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 236, subscript 92, U, yield arrow, superscript, 141, subscript 56, B a, plus sign, superscript, 92, subscript 36, K r, plus sign, 3, superscript, 1, subscript 0, n.” A graph is also shown where the y-axis is labeled “Fission yield, open parenthesis, percent sign, close parenthesis” and has values of 0 to 9 in increments of 1 while the x-axis is labeled “Mass number” and has values of 60 to 180 in increments of 20. The graph begins near point “65, 0” and rises rapidly to near “92, 6.6,” then drops just as rapidly to “107, 0” and remains there to point “127, 0.” The graph then rises again to near “132, 8,” then goes up and down a bit before falling to a point “153, 0,” and going horizontal.
(a) Nuclear fission of U-235 produces a range of fission products. (b) The larger fission products of U-235 are typically one isotope with a mass number around 85–105, and another isotope with a mass number that is about 50% larger, that is, about 130–150.

A tremendous amount of energy is produced by the fission of heavy elements. For instance, when one mole of U-235 undergoes fission, the products weigh about 0.2 grams less than the reactants; this “lost” mass is converted into a very large amount of energy, about 1.8 × 10 10 kJ per mole of U-235. Nuclear fission reactions produce incredibly large amounts of energy compared to chemical reactions. The fission of 1 kilogram of uranium-235, for example, produces about 2.5 million times as much energy as is produced by burning 1 kilogram of coal.

As described earlier, when undergoing fission U-235 produces two “medium-sized” nuclei, and two or three neutrons. These neutrons may then cause the fission of other uranium-235 atoms, which in turn provide more neutrons that can cause fission of even more nuclei, and so on. If this occurs, we have a nuclear chain reaction    (see [link] ). On the other hand, if too many neutrons escape the bulk material without interacting with a nucleus, then no chain reaction will occur.

A diagram is shown which has a white sphere labeled “superscript, 1, subscript 0, n” followed by a right-facing arrow and a large sphere composed of many smaller white and green spheres labeled “superscript, 235, subscript 92, U.” The single sphere has impacted the larger sphere. A right-facing arrow leads from the larger sphere to a pair of smaller spheres which are collections of the same white and green spheres. The upper of these two images is labeled “superscript, 93, subscript 36, K r” while the lower of the two is labeled “superscript, 142, subscript 56, B a.” A starburst pattern labeled “Energy” lies between these two spheres and has three right-facing arrows leading from it to three white spheres labeled “ superscript, 1, subscript 0, n.”  An equation below this portion of the diagram reads ““superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 140, subscript 56, B a, plus sign, superscript 90, subscript 36, K r, plus sign, 3, superscript 1, subscript 0, n.”  A right-facing arrow leads from each of these white spheres to three larger spheres, each composed of many smaller green and white spheres and labeled, from top to bottom as “a, superscript,235, subscript 92, U,” “b, superscript,235, subscript 92, U” and “c, superscript,235, subscript 92, U.” Each of these spheres is followed by a right-facing arrow which points to a pair of smaller spheres composed of the same green and white spheres with starburst patterns in between each pair labeled “Energy.” The spheres of the top pair are labeled, from top to bottom, “superscript, 96, subscript 37, R b” and “superscript, 137, subscript 55, C s.” The spheres of the middle pair are labeled, from top to bottom, “superscript, 90, subscript 38, S r” and “superscript, 144, subscript 54, X e.” The spheres of the bottom pair are labeled, from top to bottom, “superscript, 87, subscript 35, B r” and “superscript, 146, subscript 57, L a.” Each pair of spheres is followed by three right-facing arrows leading to three white spheres labeled “superscript, 1, subscript 0, n.”  Below the diagram are three nuclear equations. Equation a reads “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 96, subscript 37, R b, plus sign, superscript 137, subscript 55, C s, plus sign, 3, superscript 1, subscript 0, n.” Equation b reads “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 90, subscript 38, S r, plus sign, superscript144, subscript 54, X e, plus sign, 2, superscript 1, subscript 0, n.” Equation c reads “superscript, 235, subscript 92, U, plus sign, superscript, 1, subscript 0, n, yield arrow, superscript, 87, subscript 35, B r, plus sign, superscript 146, subscript 57, L a, plus sign, 3, superscript 1, subscript 0, n”
The fission of a large nucleus, such as U-235, produces two or three neutrons, each of which is capable of causing fission of another nucleus by the reactions shown. If this process continues, a nuclear chain reaction occurs.

Material that can sustain a nuclear fission chain reaction is said to be fissile or fissionable . (Technically, fissile material can undergo fission with neutrons of any energy, whereas fissionable material requires high-energy neutrons.) Nuclear fission becomes self-sustaining when the number of neutrons produced by fission equals or exceeds the number of neutrons absorbed by splitting nuclei plus the number that escape into the surroundings. The amount of a fissionable material that will support a self-sustaining chain reaction is a critical mass    . An amount of fissionable material that cannot sustain a chain reaction is a subcritical mass    . An amount of material in which there is an increasing rate of fission is known as a supercritical mass    . The critical mass depends on the type of material: its purity, the temperature, the shape of the sample, and how the neutron reactions are controlled ( [link] ).

Questions & Answers

what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
razzyd Reply
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
ifunanya Reply
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Kyndall Reply
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Gabe Reply
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF
Tarun Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask