<< Chapter < Page Chapter >> Page >

We start by finding three points that are solutions to the equation. We can choose any value for x or y , and then solve for the other variable.

Since y is isolated on the left side of the equation, it is easier to choose values for x . We will use 0 , 1 , and -2 for x for this example. We substitute each value of x into the equation and solve for y .

The figure shows three algebraic substitutions into an equation. The first substitution is for x = -2, with -2 shown in blue. The next line is y = 2 x + 1. The next line is y = 2 open parentheses -2, shown in blue, closed parentheses, + 1. The next line is y = - 4 + 1. The next line is y = -3. The last line is “ordered pair -2, -3”. The second  substitution is for x = 0, with 0 shown in blue. The next line is y = 2 x + 1. The next line is y = 2 open parentheses 0, shown in blue, closed parentheses, + 1. The next line is y = 0 + 1. The next line is y = 1. The last line is “ordered pair 0, 2”. The third substitution is for x = 1, with 1 shown in blue. The next line is y = 2 x + 1. The next line is y = 2 open parentheses 1, shown in blue, closed parentheses, + 1. The next line is y = 2 + 1. The next line is y = 3. The last line is “ordered pair -1, 3”.

We can organize the solutions in a table. See [link] .

y = 2 x + 1
x y ( x , y )
0 1 ( 0 , 1 )
1 3 ( 1 , 3 )
−2 −3 ( −2 , −3 )

Now we plot the points on a rectangular coordinate system. Check that the points line up. If they did not line up, it would mean we made a mistake and should double-check all our work. See [link] .

The graph shows the x y-coordinate plane. The x and y-axis each run from -7 to 7. Three labeled points are shown, “ordered pair -2, -3”, “ordered pair 0, 1”, and ordered pair 1, 3”.

Draw the line through the three points. Extend the line to fill the grid and put arrows on both ends of the line. The line is the graph of y = 2 x + 1 .

The graph shows the x y-coordinate plane. The x and y-axis each run from -7 to 7. A line passes through three labeled points, “ordered pair -2, -3”, “ordered pair 0, 1”, and ordered pair 1, 3”.

Graph a linear equation by plotting points.

  1. Find three points whose coordinates are solutions to the equation. Organize them in a table.
  2. Plot the points on a rectangular coordinate system. Check that the points line up. If they do not, carefully check your work.
  3. Draw the line through the points. Extend the line to fill the grid and put arrows on both ends of the line.

It is true that it only takes two points to determine a line, but it is a good habit to use three points. If you plot only two points and one of them is incorrect, you can still draw a line but it will not represent the solutions to the equation. It will be the wrong line. If you use three points, and one is incorrect, the points will not line up. This tells you something is wrong and you need to check your work. See [link] .

There are two figures. Figure a shows three points that are all contained on a straight line. There is a line with arrows that passed through the three points. Figure b shows 3 points that are not all arranged in a straight line.
Look at the difference between (a) and (b). All three points in (a) line up so we can draw one line through them. The three points in (b) do not line up. We cannot draw a single straight line through all three points.

Graph the equation y = −3 x .

Solution

Find three points that are solutions to the equation. It’s easier to choose values for x , and solve for y . Do you see why?

The figure shows three algebraic substitutions into an equation. The first substitution is for x = 0, with 0 shown in blue. The next line is y = -3 x. The next line is y = -3 open parentheses 0, shown in blue, closed parentheses. The next line is y = 0. The last line is “ordered pair 0, 0 “. The second substitution is for x = 1, with 0 shown in blue. The next line is y = -3 x. The next line is y = -3 open parentheses 1, shown in blue, closed parentheses. The next line is y = -3. The last line is “ordered pair 1, -3”. The third substitution is for x = -2, with -2 shown in blue. The next line is y = -3 x. The next line is y = -3 open parentheses -2, shown in blue, closed parentheses. The next line is y = 6. The last line is “ordered pair -2, 6 “.

List the points in a table.

y = −3 x
x y ( x , y )
0 0 ( 0 , 0 )
1 3 ( 1 , −3 )
−2 6 ( −2 , 6 )

Plot the points, check that they line up, and draw the line as shown.

The graph shows the x y-coordinate plane. The x and y-axis each run from -7 to 7. A line passes through three labeled points, “ordered pair -2, 6”, “ordered pair 0, 0”, and ordered pair 1, -3”. The line is labeled y = -3 x.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Graph the equation by plotting points: y = −4 x .


The graph shows the x y-coordinate plane. The x and y-axis each run from -12 to 12. A line passes through the points “ordered pair 0, 0” and “ordered pair 4, -4”.

Got questions? Get instant answers now!

Graph the equation by plotting points: y = x .


The graph shows the x y-coordinate plane. The x and y-axis each run from -12 to 12. A line passes through the points “ordered pair 0, 0” and “ordered pair 1, -4”.

Got questions? Get instant answers now!

When an equation includes a fraction as the coefficient of x , we can substitute any numbers for x . But the math is easier if we make ‘good’ choices for the values of x . This way we will avoid fraction answers, which are hard to graph precisely.

Graph the equation y = 1 2 x + 3 .

Solution

Find three points that are solutions to the equation. Since this equation has the fraction 1 2 as a coefficient of x , we will choose values of x carefully. We will use zero as one choice and multiples of 2 for the other choices.

The figure shows three algebraic substitutions into an equation. The first substitution is for x = 0, with 0 shown in blue. The next line is y = 1 over 2 x + 3. The next line is y = 1 over 2 open parentheses 0, shown in blue, closed parentheses, + 3.  The next line is y = 3. The last line is “ordered pair 0, 3”. The second substitution is for x = 2, with 2 shown in blue. The next line is y = 1 over 2 x + 3. The next line is y = 1 over 2 open parentheses 2, shown in blue, closed parentheses, + 3.  The next line is y = 4. The last line is “ordered pair 2, 4”. The third substitution is for x = 4, with 4 shown in blue. The next line is y = 1 over 2 x + 3. The next line is y = 1 over 2 open parentheses 4, shown in blue, closed parentheses, + 3.  The next line is y = 5. The last line is “ordered pair 4, 5”.

The points are shown in the table.

y = 1 2 x + 3
x y ( x , y )
0 3 ( 0 , 3 )
2 4 ( 2 , 4 )
4 5 ( 4 , 5 )

Plot the points, check that they line up, and draw the line as shown.

The graph shows the x y-coordinate plane. The x and y-axis each run from -7 to 7. A line passes through three labeled points, “ordered pair 0, 3”, “ordered pair 2, 4”, and ordered pair 4, 5”. The line is labeled y = 1 over 2 x + 3.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Graph the equation: y = 1 3 x 1 .


The graph shows the x y-coordinate plane. The x and y-axis each run from -12 to 12. A line passes through the points “ordered pair 0, -1” and “ordered pair 3, 0”.

Got questions? Get instant answers now!

Graph the equation: y = 1 4 x + 2 .


The graph shows the x y-coordinate plane. The x and y-axis each run from -12 to 12. A line passes through the points “ordered pair 0, 2” and “ordered pair -12, 0”.

Got questions? Get instant answers now!

So far, all the equations we graphed had y given in terms of x . Now we’ll graph an equation with x and y on the same side.

Graph the equation x + y = 5 .

Solution

Find three points that are solutions to the equation. Remember, you can start with any value of x or y .

The figure shows three algebraic substitutions into an equation. The first substitution is for x = 0, with 0 shown in blue. The next line is x + y = 5. The next line is 0, shown in blue + y = 5. The next line is y = 5. The last line is “ordered pair 0, 5”. The second substitution is for x = 1, with 1 shown in blue. The next line is x + y = 5. The next line is 1, shown in blue + y = 5. The next line is y = 4. The last line is “ordered pair 1, 4”. The third substitution is for x = 4, with 4 shown in blue. The next line is x + y = 5. The next line is 4, shown in blue + y = 5. The next line is y = 1. The last line is “ordered pair 4, 1”.

We list the points in a table.

x + y = 5
x y ( x , y )
0 5 ( 0 , 5 )
1 4 ( 1 , 4 )
4 1 ( 4 , 1 )

Then plot the points, check that they line up, and draw the line.

The graph shows the x y-coordinate plane. The x and y-axis each run from -7 to 7. A line passes through three labeled points, “ordered pair 0, 5”, “ordered pair 1, 4”, and ordered pair 4, 1”. The line is labeled x + y = 5.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Prealgebra. OpenStax CNX. Jul 15, 2016 Download for free at http://legacy.cnx.org/content/col11756/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Prealgebra' conversation and receive update notifications?

Ask