<< Chapter < Page Chapter >> Page >
This module provides sample problems which develop concepts related to the identity and inverse matrices.

This assignment is brought to you by one of my favorite numbers, and I’m sure it’s one of yours…the number 1. Some people say that 1 is the loneliest number that you’ll ever do. (*Bonus: who said that?) But I say, 1 is the multiplicative identity.

Allow me to demonstrate.

You get the idea? 1 is called the multiplicative identity because it has this lovely property that whenever you multiply it by anything, you get that same thing back. But that’s not all! Observe…

The fun never ends! The point of all that was that every number has an inverse. The inverse is defined by the fact that, when you multiply a number by its inverse, you get 1.

Write the equation that defines two numbers a and b as inverses of each other.

Got questions? Get instant answers now!

Find the inverse of 4 5 size 12{ { {4} over {5} } } {} .

Got questions? Get instant answers now!

Find the inverse of –3.

Got questions? Get instant answers now!

Is there any number that does not have an inverse, according to your definition in #7?

Got questions? Get instant answers now!

So, what does all that have to do with matrices? (I hear you cry.) Well, we’ve already seen a matrix which acts as a multiplicative identity! Do these problems.

[ 3 8 -4 12 ] [ 1 0 0 1 ] =

Got questions? Get instant answers now!

[ 1 0 0 1 ] [ 3 8 -4 12 ] =

Got questions? Get instant answers now!

Pretty nifty, huh? When you multiply 1 0 0 1 size 12{ left [ matrix { 1 {} # 0 {} ##0 {} # 1{} } right ]} {} by another 2×2 matrix, you get that other matrix back. That’s what makes this matrix (referred to as [ I ] ) the multiplicative identity.

Remember that matrix multiplication does not, in general, commute: that is, for any two matrices [ A ] and [ B ] , the product AB is not necessarily the same as the product BA. But in this case, it is: [ I ] times another matrix gives you that other matrix back no matter which order you do the multiplication in. This is a key part of the definition of I , which is…

Definition of [i]

The matrix I is defined as the multiplicative identity if it satisfies the equation: AI = IA = A

Which, of course, is just a fancy way of saying what I said before. If you multiply I by any matrix, in either order, you get that other matrix back.

We have just seen that 1 0 0 1 size 12{ left [ matrix { 1 {} # 0 {} ##0 {} # 1{} } right ]} {} acts as the multiplicative identify for a 2×2 matrix.

  • A

    What is the multiplicative identity for a 3×3 matrix?
  • B

    Test this identity to make sure it works.
  • C

    What is the multiplicative identity for a 5×5 matrix? (I won’t make you test this one…)
  • D

    What is the multiplicative identity for a 2×3 matrix?
  • E

    Trick question! There isn’t one. You could write a matrix that satisfies AI = A , but it would not also satisfy IA = A —that is, it would not commute, which we said was a requirement. Don’t take my word for it, try it! The point is that only square matrices (*same number of rows as columns) have an identity matrix.
Got questions? Get instant answers now!

So what about those inverses? Well, remember that two numbers a and b are inverses if a b = 1 . As you might guess, we’re going to define two matrices A and B as inverses if A B = [ I ] . Let’s try a few.

Multiply: 2 2 1 2 1 1 1 2 size 12{ left [ matrix { 2 {} # 2 { {1} over {2} } {} ##- 1 {} # - 1 { {1} over {2} } {} } right ]} {} 3 5 2 4 size 12{ left [ matrix { 3 {} # 5 {} ##- 2 {} # - 4{} } right ]} {}

Got questions? Get instant answers now!

Multiply: 3 5 2 4 size 12{ left [ matrix { 3 {} # 5 {} ##- 2 {} # - 4{} } right ]} {} 2 2 1 2 1 1 1 2 size 12{ left [ matrix { 2 {} # 2 { {1} over {2} } {} ##- 1 {} # - 1 { {1} over {2} } {} } right ]} {}

Got questions? Get instant answers now!

You see? These two matrices are inverses : no matter which order you multiply them in, you get [ I ] . We will designate the inverse of a matrix as A -1 which looks like an exponent but isn’t really, it just means inverse matrix—just as we used f -1 to designate an inverse function. Which leads us to…

Definition of a-1

The matrix A -1 is defined as the multiplicative inverse of A if it satisfies the equation: A -1 A = A A -1 = I (*where I is the identity matrix)

Of course, only a square matrix can have an inverse, since only a square matrix can have an I ! Now we know what an inverse matrix does , but how do you find one?

Find the inverse of the matrix 3 2 5 4 size 12{ left [ matrix { 3 {} # 2 {} ##5 {} # 4{} } right ]} {}

  • A

    Since we don’t know the inverse yet, we will designate it as a bunch of unknowns: a b c d size 12{ left [ matrix { a {} # b {} ##c {} # d{} } right ]} {} will be our inverse matrix. Write down the equation that defines this unknown matrix as our inverse matrix.
  • B

    Now, in your equation, you had a matrix multiplication. Go ahead and do that multiplication, and write a new equation which just sets two matrices equal to each other.
  • C

    Now, remember that when we set two matrices equal to each other, every cell must be equal. So, when we set two different 2x2 matrices equal, we actually end up with four different equations. Write these four equations.
  • D

    Solve for a , b , c , and d .
  • E

    So, write the inverse matrix A -1 .
  • F

    Test this inverse matrix to make sure it works!
Got questions? Get instant answers now!

Questions & Answers

Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Advanced algebra ii: activities and homework. OpenStax CNX. Sep 15, 2009 Download for free at http://cnx.org/content/col10686/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Advanced algebra ii: activities and homework' conversation and receive update notifications?

Ask