<< Chapter < Page Chapter >> Page >

Image of Biocomplexity Spiral
The Biocomplexity Spiral The biocomplexity spiral illustrates the concept of biocomplexity, the chaotically variable interaction of organic elements on multiple scales. Source: U.S. National Science Foundation

How is the concept of complexity important to sustainability studies? To offer one example, a biocomplexity paradigm offers the opportunity to better understand and defend biodiversity , a core environmental concern. Even with the rapid increase in knowledge in the biophysical sciences in recent decades, vast gaps exist in our understanding of natural processes and human impacts upon them. Surprisingly little is known, for example, about the susceptibilities of species populations to environmental change or, conversely, how preserving biodiversity might enhance the resilience of an ecosystem. In contrast to the largely reductionist practices of twentieth-century science, which have obscured these interrelationships, the new biocomplexity science begins with presumptions of ignorance, and from there goes on to map complexity, measure environmental impacts, quantify risk and resilience, and offer quantitative arguments for the importance of biodiversity. Such arguments, as a scientific supplement to more conventional, emotive appeals for the protection of wildlife, might then form the basis for progressive sustainability policy.

But such data-gathering projects are also breathtaking in the demands they place on analysis. The information accumulated is constant and overwhelming in volume, and the methods by which to process and operationalize the data toward sustainable practices have either not yet been devised or are imperfectly integrated within academic research structures and the policy-making engines of government and industry. To elaborate those methods requires a humanistic as well as scientific vision, a need to understand complex interactions from the molecular to the institutional and societal level.

A practical example of biocomplexity as the frame for studies in environmental sustainability are the subtle linkages between the hypoxic “dead zone” in the Gulf of Mexico and farming practices in the Mississippi River watershed. To understand the impact of hydro-engineered irrigation, nitrogen fertilizer, drainage, and deforestation in the Midwest on the fisheries of the Gulf is a classic biocomplexity problem, requiring data merging between a host of scientific specialists, from hydrologists to chemists, botanists, geologists, zoologists and engineers. Even at the conclusion of such a study, however, the human dimension remains to be explored, specifically, how industry, policy, culture and the law have interacted, on decadal time-scales, to degrade the tightly coupled riverine-ocean system of the Mississippi Gulf. A quantitative approach only goes so far. At a key moment in the process, fact accumulation must give way to the work of narrative, to the humanistic description of desires, histories, and discourses as they have governed, in this instance, land and water use in the Mississippi Gulf region.

To complexity should be added the terms resilience and vulnerability , as core concepts of sustainability studies. The resilience of a system—let’s take for example, the wildlife of the Arctic Circle—refers to the self-renewing stability of that system, its ability to rebound from shocks and threats within the range of natural variability. The vulnerability of Artic wildlife, conversely, refers to the point at which resilience is eroded to breaking point. Warming temperatures in the Arctic, many times the global average, now threaten the habitats of polar bear and walruses, and are altering the breeding and migratory habits of almost all northern wildlife populations. The human communities of the Arctic are likewise experiencing the threshold of their resilience through rising sea levels and coastal erosion. Entire villages face evacuation and the traumatic prospect of life as environmental refugees.

As mentioned earlier, we have grown accustomed to speaking of “nature” or “the environment” as if they were somehow separate from us, something that might dictate our choice of holiday destination or wall calendar, but nothing else. A useful counter-metaphor for sustainability studies, to offset this habitual view, is to think of human and natural systems in metabolic terms. Like the human body, a modern city, for example, is an energy-dependent system involving inputs and outputs. Every day, millions of tons of natural resources (raw materials, consumer goods, food, water, energy) are pumped into the world’s cities, which turn them out in the form of waste (landfill, effluent, carbon emissions, etc.).

Unlike the human body, however, the metabolism of modern cities is not a closed and self-sustaining system. Cities are consuming resources at a rate that would require a planet one and a half times the size of Earth to sustain, and are ejecting wastes into the land, water, and air that are further degrading the planet’s ability to renew its vital reserves. Here, another body metaphor—the environmental “ footprint ”—has become a popular means for imagining sufficiency and excess in our consumption of resources. The footprint metaphor is useful because it provides us an image measurement of both our own consumption volume and the environmental impact of the goods and services we use. By making sure to consume less, and to utilize only those goods and services with a responsibly low footprint, we in turn reduce our own footprint on the planet. In important ways, the problem of unsustainability is a problem of waste. From a purely instrumentalist or consumerist viewpoint, waste is incidental or irrelevant to the value of a product. A metabolic view of systems, by contrast, promotes sustainability concepts such as closed loops    and carbon neutrality    for the things we manufacture and consume, whereby there are no toxic remainders through the entire lifecycle    of a product. In this sense, systems literacy is as much a habit or style of observing the everyday world as it is an academic principle for the classroom. Because in the end, the fate of the world’s ecosystems will depend not on what we learn in the classroom but on the extent to which we integrate that learning in our lives beyond it: in our professional practice and careers, and the lifestyle and consumer choices we make over the coming years and decades. If systems literacy translates into a worldview and way of life, then sustainability is possible.

Review questions

What are synchronic and diachronic views of time, and how does the distinction help us to understand the relation between human and natural systems, and to potentially rewrite history from an environmental point of view?

Got questions? Get instant answers now!

How is a bio-complex view of the relations between human and natural systems central to sustainability, in both theory and practice?

Got questions? Get instant answers now!
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask