<< Chapter < Page Chapter >> Page >

For instance, a student’s research into deforestation of the Amazon under a sustainability studies paradigm would require investigation in a variety of fields not normally brought together under the traditional disciplinary regime. These fields might include plant biology, hydrology, and climatology, alongside economics, sociology, and the history and literature of post-colonial Brazil. Systems literacy, in a nutshell, combines the study of social history and cultural discourses with a technical understanding of ecosystem processes. Only this combination offers a comprehensive view of real-world environmental challenges as they are unfolding in the twenty-first century.

From the viewpoint of systems literacy sustainability studies works on two planes at once. Students of sustainability both acknowledge the absolute interdependence of human and natural systems—indeed that human beings and all their works are nothing if not natural—while at the same time recognizing that to solve our environmental problems we must often speak of the natural world and human societies as if they were separate entities governed by different rules. For instance, it is very useful to examine aspects of our human system as diachronic —as progressively evolving over historical time—while viewing natural systems more according to synchronic patterns of repetition and equilibrium. The diachronic features of human social evolution since 1500 would include the history of trade and finance, colonization and frontier development, and technology and urbanization, while examples of nature’s synchronicity would be exemplified in the migratory patterns of birds, plant and animal reproduction, or the microbial ecology of a lake or river. A diachronic view looks at the changes in a system over time, while the synchronic view examines the interrelated parts of the system at any given moment, assuming a stable state.

While the distinction between diachronic and synchronic systems is in some sense artificial, it does highlight the structural inevitability of dysfunction when the two interlocked systems operate on different timelines and principles. The early twentieth century appetite for rubber to service the emerging automobile industry, for instance, marks an important chapter in the “heroic” history of human technology, while signifying a very different transition in the history of forest ecosystems in Asia and Latin America. Human history since the agricultural transition 10,000 years ago, and on a much more dramatic scale in the last two hundred years, is full of such examples of new human technologies creating sudden, overwhelming demand for a natural resource previously ignored, and reshaping entire ecosystems over large areas in order to extract, transport and industrialize the newly commodified material.

Biocomplexity

For students in the humanities and social sciences, sustainability studies requires adoption of a new conceptual vocabulary drawn from the ecological sciences. Among the most important of these concepts is complexity . Biocomplexity —the chaotically variable interaction of organic elements on multiple scales—is the defining characteristic of all ecosystems, inclusive of humans. Biocomplexity science seeks to understand this nonlinear functioning of elements across multiple scales of time and space, from the molecular to the intercontinental, from the microsecond to millennia and deep time. Such an approach hasn’t been possible until very recently. For example, only since the development of (affordable) genomic sequencing in the last decade have biologists begun to investigate how environments regulate gene functions, and how changes in biophysical conditions place pressure on species selection and drive evolution.

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 9

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask