# 1.7 Integrals resulting in inverse trigonometric functions

 Page 1 / 3
• Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions before. Recall from Functions and Graphs that trigonometric functions are not one-to-one unless the domains are restricted. When working with inverses of trigonometric functions, we always need to be careful to take these restrictions into account. Also in Derivatives , we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly to integration formulas involving inverse trigonometric functions.

## Integrals that result in inverse sine functions

Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to evaluate the integrals. We prove the formula for the inverse sine integral.

## Rule: integration formulas resulting in inverse trigonometric functions

The following integration formulas yield inverse trigonometric functions:

1. $\int \frac{du}{\sqrt{{a}^{2}-{u}^{2}}}={\text{sin}}^{-1}\frac{u}{a}+C$

2. $\int \frac{du}{{a}^{2}+{u}^{2}}=\frac{1}{a}\phantom{\rule{0.05em}{0ex}}{\text{tan}}^{-1}\frac{u}{a}+C$

3. $\int \frac{du}{u\sqrt{{u}^{2}-{a}^{2}}}=\frac{1}{a}\phantom{\rule{0.05em}{0ex}}{\text{sec}}^{-1}\frac{u}{a}+C$

## Proof

Let $y={\text{sin}}^{-1}\frac{x}{a}.$ Then $a\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}y=x.$ Now let’s use implicit differentiation. We obtain

$\begin{array}{ccc}\hfill \frac{d}{dx}\phantom{\rule{0.2em}{0ex}}\left(a\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}y\right)& =\hfill & \frac{d}{dx}\phantom{\rule{0.2em}{0ex}}\left(x\right)\hfill \\ \\ \hfill a\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}y\phantom{\rule{0.2em}{0ex}}\frac{dy}{dx}& =\hfill & 1\hfill \\ \hfill \frac{dy}{dx}& =\hfill & \frac{1}{a\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}y}.\hfill \end{array}$

For $-\frac{\pi }{2}\le y\le \frac{\pi }{2},\text{cos}\phantom{\rule{0.1em}{0ex}}y\ge 0.$ Thus, applying the Pythagorean identity ${\text{sin}}^{2}y+{\text{cos}}^{2}y=1,$ we have $\text{cos}\phantom{\rule{0.1em}{0ex}}y=\sqrt{1={\text{sin}}^{2}y}.$ This gives

$\begin{array}{cc}\frac{1}{a\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}y}\hfill & =\frac{1}{a\sqrt{1-{\text{sin}}^{2}y}}\hfill \\ \\ & =\frac{1}{\sqrt{{a}^{2}-{a}^{2}{\text{sin}}^{2}y}}\hfill \\ & =\frac{1}{\sqrt{{a}^{2}-{x}^{2}}}.\hfill \end{array}$

Then for $\text{−}a\le x\le a,$ we have

$\int \frac{1}{\sqrt{{a}^{2}-{u}^{2}}}du={\text{sin}}^{-1}\left(\frac{u}{a}\right)+C.$

## Evaluating a definite integral using inverse trigonometric functions

Evaluate the definite integral ${\int }_{0}^{1}\frac{dx}{\sqrt{1-{x}^{2}}}.$

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse trigonometric functions, and then evaluate the definite integral. We have

$\begin{array}{}\\ \\ {\int }_{0}^{1}\frac{dx}{\sqrt{1-{x}^{2}}}\hfill & ={\text{sin}}^{-1}x{|}_{0}^{1}\hfill \\ & ={\text{sin}}^{-1}1-{\text{sin}}^{-1}0\hfill \\ & =\frac{\pi }{2}-0\hfill \\ & =\frac{\pi }{2}.\hfill \end{array}$

Find the antiderivative of $\int \frac{dx}{\sqrt{1-16{x}^{2}}}.$

$\frac{1}{4}\phantom{\rule{0.05em}{0ex}}{\text{sin}}^{-1}\left(4x\right)+C$

## Finding an antiderivative involving an inverse trigonometric function

Evaluate the integral $\int \frac{dx}{\sqrt{4-9{x}^{2}}}.$

Substitute $u=3x.$ Then $du=3dx$ and we have

$\int \frac{dx}{\sqrt{4-9{x}^{2}}}=\frac{1}{3}\int \frac{du}{\sqrt{4-{u}^{2}}}.$

Applying the formula with $a=2,$ we obtain

$\begin{array}{cc}\int \frac{dx}{\sqrt{4-9{x}^{2}}}\hfill & =\frac{1}{3}\int \frac{du}{\sqrt{4-{u}^{2}}}\hfill \\ \\ & =\frac{1}{3}{\text{sin}}^{-1}\left(\frac{u}{2}\right)+C\hfill \\ & =\frac{1}{3}{\text{sin}}^{-1}\left(\frac{3x}{2}\right)+C.\hfill \end{array}$

Find the indefinite integral using an inverse trigonometric function and substitution for $\int \frac{dx}{\sqrt{9-{x}^{2}}}.$

${\text{sin}}^{-1}\left(\frac{x}{3}\right)+C$

## Evaluating a definite integral

Evaluate the definite integral ${\int }_{0}^{\sqrt{3}\text{/}2}\frac{du}{\sqrt{1-{u}^{2}}}.$

The format of the problem matches the inverse sine formula. Thus,

$\begin{array}{}\\ \\ {\int }_{0}^{\sqrt{3}\text{/}2}\frac{du}{\sqrt{1-{u}^{2}}}\hfill & ={\text{sin}}^{-1}u{|}_{0}^{\sqrt{3}\text{/}2}\hfill \\ & =\left[{\text{sin}}^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]-\left[{\text{sin}}^{-1}\left(0\right)\right]\hfill \\ & =\frac{\pi }{3}.\hfill \end{array}$

## Integrals resulting in other inverse trigonometric functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use. The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close this section, we examine one more formula: the integral resulting in the inverse tangent function.

## Finding an antiderivative involving the inverse tangent function

Find an antiderivative of $\int \frac{1}{1+4{x}^{2}}dx.$

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse trigonometric functions, the integrand looks similar to the formula for ${\text{tan}}^{-1}u+C.$ So we use substitution, letting $u=2x,$ then $du=2dx$ and $1\text{/}2du=dx.$ Then, we have

$\frac{1}{2}\int \frac{1}{1+{u}^{2}}du=\frac{1}{2}\phantom{\rule{0.05em}{0ex}}{\text{tan}}^{-1}u+C=\frac{1}{2}\phantom{\rule{0.05em}{0ex}}{\text{tan}}^{-1}\left(2x\right)+C.$

what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
how did I we'll learn this
f(x)= 2|x+5| find f(-6)
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Got questions? Join the online conversation and get instant answers!