<< Chapter < Page Chapter >> Page >
This module discusses how to add and subtract fractions with like denominators and how to find the least common denominator to allow addition and subtraction of fractions with unlike denominators.

Adding fractions with like denominators

To add two or more fractions that have the same denominators, add the numerators and place the resulting sum over the common denominator . Reduce, if necessary.

Find the following sums.

3 7 size 12{ { {3} over {7} } } {} + 2 7 size 12{ { {2} over {7} } } {}

The denominators are the same.

Add the numerators and place the sum over the common denominator, 7.

3 7 size 12{ { {3} over {7} } } {} + 2 7 size 12{ { {2} over {7} } } {} = 3 + 2 7 size 12{ { {3+2} over {7} } } {} = 5 7 size 12{ { {5} over {7} } } {}

When necessary, reduce the result.

1 8 size 12{ { {1} over {8} } } {} + 3 8 size 12{ { {3} over {8} } } {} = 1 + 3 8 size 12{ { {1+3} over {8} } } {} = 4 8 size 12{ { {4} over {8} } } {} = 1 2 size 12{ { {1} over {2} } } {}

We do not add denominators.

To see what happens if we mistakenly add the denominators as well as the numerators, let’s add

1 2 size 12{ { {1} over {2} } } {} and 1 2 size 12{ { {1} over {2} } } {} .

Adding the numerators and mistakenly adding the denominators produces:

1 2 size 12{ { {1} over {2} } } {} + 1 2 size 12{ { {1} over {2} } } {} = 1 + 1 2 + 2 size 12{ { {1+1} over {2+2} } } {} = 2 4 size 12{ { {2} over {4} } } {} = 1 2 size 12{ { {1} over {2} } } {}

This means that 1 2 size 12{ { {1} over {2} } } {} + 1 2 size 12{ { {1} over {2} } } {} is the same as 1 2 size 12{ { {1} over {2} } } {} , which is preposterous! We do not add denominators .

Adding fractions with like denominators - exercises

Find the following sums.

3 8 size 12{ { {3} over {8} } } {} + 3 8 size 12{ { {3} over {8} } } {}

6 8 size 12{ { {6} over {8} } } {} = 3 4 size 12{ { {3} over {4} } } {}

7 11 size 12{ { {7} over {"11"} } } {} + 4 11 size 12{ { {4} over {"11"} } } {}

11 11 size 12{ { {"11"} over {"11"} } } {} = 1

15 20 size 12{ { {"15"} over {"20"} } } {} + 1 20 size 12{ { {1} over {"20"} } } {} + 2 20 size 12{ { {2} over {"20"} } } {}

18 20 size 12{ { {"18"} over {"20"} } } {} = 9 10 size 12{ { {9} over {"10"} } } {}

Subtracting fractions with like denominators

To subtract two or more fractions that have the same denominators, subtract the numerators and place the resulting difference over the common denominator . Reduce, if necessary.

Find the following differences.

3 5 size 12{ { {3} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {}

The denominators are the same.

Subtract the numerators and place the difference over the common denominator, 5.

3 5 size 12{ { {3} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {} = 3 1 5 size 12{ { {3 - 1} over {5} } } {} = 2 5 size 12{ { {2} over {5} } } {}

When necessary, reduce the result.

8 6 size 12{ { {8} over {6} } } {} - 2 6 size 12{ { {2} over {6} } } {} = 6 6 size 12{ { {6} over {6} } } {} = 1

We do not subtract denominators.

To see what happens if we mistakenly subtract the denominators as well as the numerators, let’s subtract

7 15 size 12{ { {7} over {"15"} } } {} - 4 15 size 12{ { {4} over {"15"} } } {} .

Subtracting the numerators and mistakenly subtracting the denominators produces:

7 15 size 12{ { {7} over {"15"} } } {} - 4 15 size 12{ { {4} over {"15"} } } {} = 7 4 15 15 size 12{ { {7 - 4} over {"15" - "15"} } } {} = 3 0 size 12{ { {3} over {0} } } {}

We end up dividing by zero, which is undefined. We do not subtract denominators.

Subtracting fractions with like denominators - exercises

Find the following differences.

5 12 size 12{ { {5} over {"12"} } } {} - 1 12 size 12{ { {1} over {"12"} } } {}

4 12 size 12{ { {4} over {"12"} } } {} = 1 3 size 12{ { {1} over {3} } } {}

3 16 size 12{ { {3} over {"16"} } } {} - 3 16 size 12{ { {3} over {"16"} } } {}

Result is 0

16 5 size 12{ { {"16"} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {} - 2 5 size 12{ { {2} over {5} } } {}

Result is 13 5 size 12{ { {"13"} over {5} } } {}

Adding and subtracting fractions with unlike denominators

Basic Rule: Fractions can only be added or subtracted conveniently if they have like denominators.

To see why this rule makes sense, let’s consider the problem of adding a quarter and a dime.

A quarter is 1 4 size 12{ { {1} over {4} } } {} of a dollar.

A dime is 1 10 size 12{ { {1} over {"10"} } } {} of a dollar.

We know that 1 quarter + 1 dime = 35 cents. How do we get to this answer by adding 1 4 size 12{ { {1} over {4} } } {} and 1 10 size 12{ { {1} over {"10"} } } {} ?

We convert them to quantities of the same denomination.

A quarter is equivalent to 25 cents, or 25 100 size 12{ { {"25"} over {"100"} } } {} .

A dime is equivalent to 10 cents, or 10 100 size 12{ { {"10"} over {"100"} } } {} .

By converting them to quantities of the same denomination, we can add them easily:

25 100 size 12{ { {"25"} over {"100"} } } {} + 10 100 size 12{ { {"10"} over {"100"} } } {} = 35 100 size 12{ { {"35"} over {"100"} } } {} .

Same denomination size 12{ rightarrow } {} same denominator

If the denominators are not the same, make them the same by building up the fractions so that they both have a common denominator. A common denominator can always be found by multiplying all the denominators, but it is not necessarily the Least Common Denominator.

Least common denominator (lcd)

The LCD is the smallest number that is evenly divisible by all the denominators.

It is the least common multiple of the denominators.

The LCD is the product of all the prime factors of all the denominators, each factor taken the greatest number of times that it appears in any single denominator.

Finding the lcd

Find the sum of these unlike fractions.

1 12 size 12{ { {1} over {"12"} } } {} + 4 15 size 12{ { {4} over {"15"} } } {}

Factor the denominators:

12 = 2 × 2 × 3

15 = 3 × 5

What is the greatest number of times the prime factor 2 appear in any single denominator? Answer: 2 times. That is the number of times the prime factor 2 will appear as a factor in the LCD.

What is the greatest number of times the prime factor 3 appear in any single denominator? Answer: 1 time. That is the number of times the prime factor 3 will appear as a factor in the LCD.

What is the greatest number of times the prime factor 5 appear in any single denominator? Answer: 1 time. That is the number of times the prime factor 5 will appear as a factor in the LCD.

So we assemble the LCD by multiplying each prime factor by the number of times it appears in a single denominator, or:

2 × 2 × 3 × 5 = 60

60 is the Least Common Denominator (the Least Common Multiple of 12 and 15) .

Building up the fractions

To create fractions with like denominators, we now multiply the numerators by whatever factors are missing when we compare the original denominator to the new LCD.

In the fraction 1 12 size 12{ { {1} over {"12"} } } {} , we multiply the denominator 12 by 5 to get the LCD of 60. Therefore we multiply the numerator 1 by the same factor (5).

1 12 size 12{ { {1} over {"12"} } } {} × 5 5 size 12{ { {5} over {5} } } {} = 5 60 size 12{ { {5} over {"60"} } } {}

Similarly,

4 15 size 12{ { {4} over {"15"} } } {} × 4 4 size 12{ { {4} over {4} } } {} = 16 60 size 12{ { {"16"} over {"60"} } } {}

Adding the built up fractions

We can now add the two fractions because they have like denominators:

5 60 size 12{ { {5} over {"60"} } } {} + 16 60 size 12{ { {"16"} over {"60"} } } {} = 21 60 size 12{ { {"21"} over {"60"} } } {}

Reduce the result: 21 60 size 12{ { {"21"} over {"60"} } } {} = 7 20 size 12{ { {7} over {"20"} } } {}

Adding and subtracting fractions with unlike denominators - exercises

Find the following sums and differences.

1 6 size 12{ { {1} over {6} } } {} + 3 4 size 12{ { {3} over {4} } } {}

Result is 11 12 size 12{ { {"11"} over {"12"} } } {}

5 9 size 12{ { {5} over {9} } } {} - 5 12 size 12{ { {5} over {"12"} } } {}

Result is 5 36 size 12{ { {5} over {"36"} } } {}

15 16 size 12{ { {"15"} over {"16"} } } {} + 1 2 size 12{ { {1} over {2} } } {} - 3 4 size 12{ { {3} over {4} } } {}

Result is 35 16 size 12{ { {"35"} over {"16"} } } {}

Module review exercises

9 15 size 12{ { {9} over {"15"} } } {} + 4 15 size 12{ { {4} over {"15"} } } {}

Result is 13 15 size 12{ { {"13"} over {"15"} } } {}

7 10 size 12{ { {7} over {"10"} } } {} - 3 10 size 12{ { {3} over {"10"} } } {} + 11 10 size 12{ { {"11"} over {"10"} } } {}

Result is 15 10 size 12{ { {"15"} over {"10"} } } {} (reduce to 1 1 2 size 12{ { {1} over {2} } } {} )

Find the total length of the screw in this diagram:

Total length is 19 32 size 12{ { {"19"} over {"32"} } } {} in.

5 2 size 12{ { {5} over {2} } } {} + 16 2 size 12{ { {"16"} over {2} } } {} - 3 2 size 12{ { {3} over {2} } } {}

Result is 18 2 size 12{ { {"18"} over {2} } } {} (reduce to 9)

3 4 size 12{ { {3} over {4} } } {} + 1 3 size 12{ { {1} over {3} } } {}

Result is 13 12 size 12{ { {"13"} over {"12"} } } {}

Two months ago, a woman paid off 3 24 size 12{ { {3} over {"24"} } } {} of a loan. One month ago, she paid off 4 24 size 12{ { {4} over {"24"} } } {} of the loan. This month she will pay off 5 24 size 12{ { {5} over {"24"} } } {} of the total loan. At the end of this month, how much of her total loan will she have paid off?

She will have paid off 12 24 size 12{ { {"12"} over {"24"} } } {} , or 1 2 size 12{ { {1} over {2} } } {} of the total loan.

8 3 size 12{ { {8} over {3} } } {} - 1 4 size 12{ { {1} over {4} } } {} + 7 36 size 12{ { {7} over {"36"} } } {}

Result is 94 36 size 12{ { {"94"} over {"36"} } } {} (reduce to 47 18 size 12{ { {"47"} over {"18"} } } {} )

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask