<< Chapter < Page Chapter >> Page >
This module discusses how to add and subtract fractions with like denominators and how to find the least common denominator to allow addition and subtraction of fractions with unlike denominators.

Adding fractions with like denominators

To add two or more fractions that have the same denominators, add the numerators and place the resulting sum over the common denominator . Reduce, if necessary.

Find the following sums.

3 7 size 12{ { {3} over {7} } } {} + 2 7 size 12{ { {2} over {7} } } {}

The denominators are the same.

Add the numerators and place the sum over the common denominator, 7.

3 7 size 12{ { {3} over {7} } } {} + 2 7 size 12{ { {2} over {7} } } {} = 3 + 2 7 size 12{ { {3+2} over {7} } } {} = 5 7 size 12{ { {5} over {7} } } {}

When necessary, reduce the result.

1 8 size 12{ { {1} over {8} } } {} + 3 8 size 12{ { {3} over {8} } } {} = 1 + 3 8 size 12{ { {1+3} over {8} } } {} = 4 8 size 12{ { {4} over {8} } } {} = 1 2 size 12{ { {1} over {2} } } {}

We do not add denominators.

To see what happens if we mistakenly add the denominators as well as the numerators, let’s add

1 2 size 12{ { {1} over {2} } } {} and 1 2 size 12{ { {1} over {2} } } {} .

Adding the numerators and mistakenly adding the denominators produces:

1 2 size 12{ { {1} over {2} } } {} + 1 2 size 12{ { {1} over {2} } } {} = 1 + 1 2 + 2 size 12{ { {1+1} over {2+2} } } {} = 2 4 size 12{ { {2} over {4} } } {} = 1 2 size 12{ { {1} over {2} } } {}

This means that 1 2 size 12{ { {1} over {2} } } {} + 1 2 size 12{ { {1} over {2} } } {} is the same as 1 2 size 12{ { {1} over {2} } } {} , which is preposterous! We do not add denominators .

Adding fractions with like denominators - exercises

Find the following sums.

3 8 size 12{ { {3} over {8} } } {} + 3 8 size 12{ { {3} over {8} } } {}

6 8 size 12{ { {6} over {8} } } {} = 3 4 size 12{ { {3} over {4} } } {}

7 11 size 12{ { {7} over {"11"} } } {} + 4 11 size 12{ { {4} over {"11"} } } {}

11 11 size 12{ { {"11"} over {"11"} } } {} = 1

15 20 size 12{ { {"15"} over {"20"} } } {} + 1 20 size 12{ { {1} over {"20"} } } {} + 2 20 size 12{ { {2} over {"20"} } } {}

18 20 size 12{ { {"18"} over {"20"} } } {} = 9 10 size 12{ { {9} over {"10"} } } {}

Subtracting fractions with like denominators

To subtract two or more fractions that have the same denominators, subtract the numerators and place the resulting difference over the common denominator . Reduce, if necessary.

Find the following differences.

3 5 size 12{ { {3} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {}

The denominators are the same.

Subtract the numerators and place the difference over the common denominator, 5.

3 5 size 12{ { {3} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {} = 3 1 5 size 12{ { {3 - 1} over {5} } } {} = 2 5 size 12{ { {2} over {5} } } {}

When necessary, reduce the result.

8 6 size 12{ { {8} over {6} } } {} - 2 6 size 12{ { {2} over {6} } } {} = 6 6 size 12{ { {6} over {6} } } {} = 1

We do not subtract denominators.

To see what happens if we mistakenly subtract the denominators as well as the numerators, let’s subtract

7 15 size 12{ { {7} over {"15"} } } {} - 4 15 size 12{ { {4} over {"15"} } } {} .

Subtracting the numerators and mistakenly subtracting the denominators produces:

7 15 size 12{ { {7} over {"15"} } } {} - 4 15 size 12{ { {4} over {"15"} } } {} = 7 4 15 15 size 12{ { {7 - 4} over {"15" - "15"} } } {} = 3 0 size 12{ { {3} over {0} } } {}

We end up dividing by zero, which is undefined. We do not subtract denominators.

Subtracting fractions with like denominators - exercises

Find the following differences.

5 12 size 12{ { {5} over {"12"} } } {} - 1 12 size 12{ { {1} over {"12"} } } {}

4 12 size 12{ { {4} over {"12"} } } {} = 1 3 size 12{ { {1} over {3} } } {}

3 16 size 12{ { {3} over {"16"} } } {} - 3 16 size 12{ { {3} over {"16"} } } {}

Result is 0

16 5 size 12{ { {"16"} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {} - 2 5 size 12{ { {2} over {5} } } {}

Result is 13 5 size 12{ { {"13"} over {5} } } {}

Adding and subtracting fractions with unlike denominators

Basic Rule: Fractions can only be added or subtracted conveniently if they have like denominators.

To see why this rule makes sense, let’s consider the problem of adding a quarter and a dime.

A quarter is 1 4 size 12{ { {1} over {4} } } {} of a dollar.

A dime is 1 10 size 12{ { {1} over {"10"} } } {} of a dollar.

We know that 1 quarter + 1 dime = 35 cents. How do we get to this answer by adding 1 4 size 12{ { {1} over {4} } } {} and 1 10 size 12{ { {1} over {"10"} } } {} ?

We convert them to quantities of the same denomination.

A quarter is equivalent to 25 cents, or 25 100 size 12{ { {"25"} over {"100"} } } {} .

A dime is equivalent to 10 cents, or 10 100 size 12{ { {"10"} over {"100"} } } {} .

By converting them to quantities of the same denomination, we can add them easily:

25 100 size 12{ { {"25"} over {"100"} } } {} + 10 100 size 12{ { {"10"} over {"100"} } } {} = 35 100 size 12{ { {"35"} over {"100"} } } {} .

Same denomination size 12{ rightarrow } {} same denominator

If the denominators are not the same, make them the same by building up the fractions so that they both have a common denominator. A common denominator can always be found by multiplying all the denominators, but it is not necessarily the Least Common Denominator.

Least common denominator (lcd)

The LCD is the smallest number that is evenly divisible by all the denominators.

It is the least common multiple of the denominators.

The LCD is the product of all the prime factors of all the denominators, each factor taken the greatest number of times that it appears in any single denominator.

Finding the lcd

Find the sum of these unlike fractions.

1 12 size 12{ { {1} over {"12"} } } {} + 4 15 size 12{ { {4} over {"15"} } } {}

Factor the denominators:

12 = 2 × 2 × 3

15 = 3 × 5

What is the greatest number of times the prime factor 2 appear in any single denominator? Answer: 2 times. That is the number of times the prime factor 2 will appear as a factor in the LCD.

What is the greatest number of times the prime factor 3 appear in any single denominator? Answer: 1 time. That is the number of times the prime factor 3 will appear as a factor in the LCD.

What is the greatest number of times the prime factor 5 appear in any single denominator? Answer: 1 time. That is the number of times the prime factor 5 will appear as a factor in the LCD.

So we assemble the LCD by multiplying each prime factor by the number of times it appears in a single denominator, or:

2 × 2 × 3 × 5 = 60

60 is the Least Common Denominator (the Least Common Multiple of 12 and 15) .

Building up the fractions

To create fractions with like denominators, we now multiply the numerators by whatever factors are missing when we compare the original denominator to the new LCD.

In the fraction 1 12 size 12{ { {1} over {"12"} } } {} , we multiply the denominator 12 by 5 to get the LCD of 60. Therefore we multiply the numerator 1 by the same factor (5).

1 12 size 12{ { {1} over {"12"} } } {} × 5 5 size 12{ { {5} over {5} } } {} = 5 60 size 12{ { {5} over {"60"} } } {}

Similarly,

4 15 size 12{ { {4} over {"15"} } } {} × 4 4 size 12{ { {4} over {4} } } {} = 16 60 size 12{ { {"16"} over {"60"} } } {}

Adding the built up fractions

We can now add the two fractions because they have like denominators:

5 60 size 12{ { {5} over {"60"} } } {} + 16 60 size 12{ { {"16"} over {"60"} } } {} = 21 60 size 12{ { {"21"} over {"60"} } } {}

Reduce the result: 21 60 size 12{ { {"21"} over {"60"} } } {} = 7 20 size 12{ { {7} over {"20"} } } {}

Adding and subtracting fractions with unlike denominators - exercises

Find the following sums and differences.

1 6 size 12{ { {1} over {6} } } {} + 3 4 size 12{ { {3} over {4} } } {}

Result is 11 12 size 12{ { {"11"} over {"12"} } } {}

5 9 size 12{ { {5} over {9} } } {} - 5 12 size 12{ { {5} over {"12"} } } {}

Result is 5 36 size 12{ { {5} over {"36"} } } {}

15 16 size 12{ { {"15"} over {"16"} } } {} + 1 2 size 12{ { {1} over {2} } } {} - 3 4 size 12{ { {3} over {4} } } {}

Result is 35 16 size 12{ { {"35"} over {"16"} } } {}

Module review exercises

9 15 size 12{ { {9} over {"15"} } } {} + 4 15 size 12{ { {4} over {"15"} } } {}

Result is 13 15 size 12{ { {"13"} over {"15"} } } {}

7 10 size 12{ { {7} over {"10"} } } {} - 3 10 size 12{ { {3} over {"10"} } } {} + 11 10 size 12{ { {"11"} over {"10"} } } {}

Result is 15 10 size 12{ { {"15"} over {"10"} } } {} (reduce to 1 1 2 size 12{ { {1} over {2} } } {} )

Find the total length of the screw in this diagram:

Total length is 19 32 size 12{ { {"19"} over {"32"} } } {} in.

5 2 size 12{ { {5} over {2} } } {} + 16 2 size 12{ { {"16"} over {2} } } {} - 3 2 size 12{ { {3} over {2} } } {}

Result is 18 2 size 12{ { {"18"} over {2} } } {} (reduce to 9)

3 4 size 12{ { {3} over {4} } } {} + 1 3 size 12{ { {1} over {3} } } {}

Result is 13 12 size 12{ { {"13"} over {"12"} } } {}

Two months ago, a woman paid off 3 24 size 12{ { {3} over {"24"} } } {} of a loan. One month ago, she paid off 4 24 size 12{ { {4} over {"24"} } } {} of the loan. This month she will pay off 5 24 size 12{ { {5} over {"24"} } } {} of the total loan. At the end of this month, how much of her total loan will she have paid off?

She will have paid off 12 24 size 12{ { {"12"} over {"24"} } } {} , or 1 2 size 12{ { {1} over {2} } } {} of the total loan.

8 3 size 12{ { {8} over {3} } } {} - 1 4 size 12{ { {1} over {4} } } {} + 7 36 size 12{ { {7} over {"36"} } } {}

Result is 94 36 size 12{ { {"94"} over {"36"} } } {} (reduce to 47 18 size 12{ { {"47"} over {"18"} } } {} )

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (lecture) readings in precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11354/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (lecture) readings in precalculus' conversation and receive update notifications?

Ask