<< Chapter < Page Chapter >> Page >

Mathematical concept of vector is basically secular in nature and general in application. This means that mathematical treatment of vectors is without reference to any specific physical quantity or phenomena. In other words, we can employ vector and its methods to all quantities, which possess directional attribute, in a uniform and consistent manner. For example two vectors would be added in accordance with vector addition rule irrespective of whether vectors involved represent displacement, force, torque or some other vector quantities.

The moot point of discussion here is that vector has been devised to suit the requirement of natural process and not the other way around that natural process suits vector construct as defined in vector mathematics.

What is a vector?

Vector is a physical quantity, which has both magnitude and direction.

A vector is represented graphically by an arrow drawn on a scale as shown Figure i . In order to process vectors using graphical methods, we need to draw all vectors on the same scale. The arrow head point in the direction of the vector.

A vector is notionally represented in a characteristic style. It is denoted as bold face type like “ a ” as shown Figure (i) or with a small arrow over the symbol like “ a ” or with a small bar as in “ a - ”. The magnitude of a vector quantity is referred by simple identifier like “a” or as the absolute value of the vector as “ | a | ” .

Two vectors of equal magnitude and direction are equal vectors ( Figure (ii) ). As such, a vector can be laterally shifted as long as its direction remains same ( Figure (ii) ). Also, vectors can be shifted along its line of application represented by dotted line ( Figure (iii) ). The flexibility by virtue of shifting vector allows a great deal of ease in determining vector’s interaction with other scalar or vector quantities.


It should be noted that graphical representation of vector is independent of the origin or axes of coordinate system except for few vectors like position vector (called localized vector), which is tied to the origin or a reference point by definition. With the exception of localized vector, a change in origin or orientation of axes or both does not affect vectors and vector operations like addition or multiplication (see figure below).


The vector is not affected, when the coordinate is rotated or displaced as shown in the figure above. Both the orientation and positioning of origin i.e reference point do not alter the vector representation. It remains what it is. This feature of vector operation is an added value as the study of physics in terms of vectors is simplified, being independent of the choice of coordinate system in a given reference.

Vector algebra

Graphical method is slightly meticulous and error prone as it involves drawing of vectors on scale and measurement of angles. In addition, it does not allow algebraic manipulation that otherwise would give a simple solution as in the case of scalar algebra. We can, however, extend algebraic techniques to vectors, provided vectors are represented on a rectangular coordinate system. The representation of a vector on a coordinate system uses the concept of unit vectors and scalar magnitudes. We shall discuss these aspects in a separate module titled Components of a vector . Here, we briefly describe the concept of unit vector and technique to represent a vector in a particular direction.

Questions & Answers

if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
Abhyanshu Reply
what is the definition of resolution of forces
Atinuke Reply
what is energy?
James Reply
can anyone tell who founded equations of motion !?
Ztechy Reply
n=a+b/T² find the linear express
Donsmart Reply
Sultan Reply
Moment of inertia of a bar in terms of perpendicular axis theorem
Sultan Reply
How should i know when to add/subtract the velocities and when to use the Pythagoras theorem?
Yara Reply
Centre of mass of two uniform rods of same length but made of different materials and kept at L-shape meeting point is origin of coordinate
Rama Reply
A balloon is released from the ground which rises vertically up with acceleration 1.4m/sec^2.a ball is released from the balloon 20 second after the balloon has left the ground. The maximum height reached by the ball from the ground is
Lucky Reply
work done by frictional force formula
Sudeer Reply
Misthu Reply
Why are we takingspherical surface area in case of solid sphere
Saswat Reply
In all situatuons, what can I generalize?
Cart Reply
the body travels the distance of d=( 14+- 0.2)m in t=( 4.0 +- 0.3) s calculate it's velocity with error limit find Percentage error
Clinton Reply

Get the best Physics for k-12 course in your pocket!

Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?